
MATH 2230A - HW 11 - Related Facts and Solutions

Below are key definitions and theorems relating to this homework. All curves are oriented counter
clockwise.

Lemma 0.1 (Jordan’s Inequality). Denote CR := {z ∈ C : |z| = R, Im(z) ≥ 0}, that is the upper
semi-circle of radius R. Let f be a function continuous on CR. Let a > 0 be a real constant. Then
we have ∣∣∣∣∫

CR

f(z)eiazdz

∣∣∣∣ ≤ π

a
MR

where MR := supz∈CR |f(z)|.

Remark. • The proofs in fact follow from triangle inequality of integrals

• In the proof, the concavity of the sine function on [0, π/2] is used.

• This approximation is important because the right-hand side is independent of R.

Theorem 0.2 (Jordan’s Lemma). Denote CR := {z ∈ C : |z| = R, Im(z) ≥ 0}. Let f be a function.
Suppose f is continuous on CR when R is sufficiently large, that is there exists R0 > 0 such that f
is continuous on CR when R ≥ R0. Suppose further MR := supz∈CR |f(z)| → 0 as R→∞. Then

lim
R→∞

∫
CR

f(z)eiazdz = 0.

where a > 0

Remark. This follows directly from the Jordan’s inequality.

Theorem 0.3 (Indented path approximation, Sec.89 in Textbook). Let z0 ∈ C. Let f be holomor-
phic on a deleted neighbhorhood of x0. Suppose x0 is a simple pole of f . Denote Cρ := {z ∈ C :
|z − z0| = ρ, Im(z − z0) ≥ 0}, that is, the upper semicircular arc of radius ρ centered at x0. Then
we have

lim
ρ→0

∫
Cρ

f(z)dz = iπRes(f, z0)

Remark. We mostly consider the case z0 = 0 or on the real-axis. The limit follows by considering
the Laurent Series of f at z0. The holomorphic part converges to 0 because it is bounded on closed
disks by the extreme value theorem.

The above facts are useful for the first 13 questions. We shall see next the related definitions
and theorems for the last 4 questions on the next page.
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Definition 0.4 (Meromorphic functions). Let Ω be a (open connected) domain. Then a function
f : Ω → C ∪ {∞} is called meromorphic if it is holomorphic on Ω, except for isolated singularities
that are poles. In other words, if f(z) 6= ∞ then f is holomorphic at z; if f(z) = ∞, then f has a
pole at the isolated singularity z.

Theorem 0.5 (Argument Principle). Let f : Ω→ C ∪ {∞} be a meromorphic function. Let γ be a
simple closed curve on Ω. Suppose f has no zeros and poles on γ. Then we have

1

2πi

∫
γ

f ′(z)

f(z)
dz = Z(f, γ)− P (f, γ)

where Z(f, γ) and P (f, γ) denote the number of zeros and poles (counting multiplicity) of f in the
region bounded by the closed curve γ,

Remark. • The proof follows from the Residue Theorems. The residues could be computed by
writing f(z) = g(z)(z − z0)n (resp. f(z) = (z − z0)−n) where n is the order of the zero (resp.
pole) z0 with g being holomorphic non-zero at z0.

• The number of poles and zeros of a meromorphic function on the closed region bounded by
a (closed) curve is always finite. This is because of the isolation of poles and zeros and the
compactness of the (closed and bounded) region. (See Proposition 1.47 in the Lecture Note
for a similar proof.)

• The integral on the left (including the multiple 1
2πi ) is in fact the so-called winding number1of

the curve f ◦ γ at 0, which naively is the number of times the curve f ◦ γ (the image of the
curve γ through f) loops around 0. It is also denoted by 1

2πi∆γ(f(z)) as in the textbook and
lecture note.

• The Argument Principal shows that the image of a simple closed curve from a holomorphic
map is not necessarily simple, that is, the image may have self-intersections.

Theorem 0.6 (Rouche’s Theorem). Let g, f : Ω → C be holomorphic from a domain. Let γ be a
simple closed curve on Ω. Suppose |g(z)| < |f(z)| for all z ∈ γ. Then f, g+f have the same number
of zeros inside γ

Remark. • Its proof is an application of the Argument Principle.

• The Rouche’s Theorem roughly says that you can modify a given holomophic function f
without chaning the number of zeros inside certain region as long as the modification function
g is strictly dominated by f on the boundary of the region.

1Let γ : [s, t] → C be a (continuously differentiable) closed curve (not necessarily simple). (Recall that a simple
curve is one that has no self-intersection except maybe at endpoints. So a (non-simple) closed curves may loop around
itself many times). Let a be a point not on γ (so w either lies in the interior region bounded by the curve or the
region exterior to the curve). Then the winding number of γ around a is defined to be Wγ(a) := 1

2πi

∫
γ

1
z−adz. Do

you see why this definition really can capture the number of times a curve loops around a certain point?
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Solutions

Throughout the solution, unless otherwise specified, CR is understood to be the upper semi-circular

arc with radius R > 0, oriented clockwise and centered at 0 . Moreover the integral
∫ b
a

would always
refer to integrating the contour [a, b] on the real-axis where a, b ∈ R. We also denote [z1, z2] to be
the straightline contour oriented from z1 to z2 where z1, z2 ∈ C.

P.264-265

Solution. Let f(z) = 1
(z2+1)2 . Then f is holomorphic except at {i} on the upper half plane, where i

is an order-2 pole. By residue theorem on the upper half disks, fix R > 0 sufficiently large, we have∫ R

−R
f(z)dz +

∫
CR

f(z)dz = 2πiRes(f, i)

First, we compute Res(f, i). Since i is an order-2 pole, we define g(z) = (z − i)−2f(z) where g is
holomorphic non-zero at i. Then Res(f, i) = g′(i) = ( 1

(z+i)2 )′(i) = −i
4 .

Next note that for all z ∈ CR, |f(z)| =
∣∣∣ 1
(z2+1)2

∣∣∣ ≤ 1
(|z|2−1)2 = 1

(R2−1)2 =: MR. Therefore by the

triangle inequality for integral, we have that
∣∣∣∫CR f(z)dz

∣∣∣ ≤ πRMR which converges to 0 as R→∞.

Therefore putting R→∞, we have∫ ∞
−∞

f(z)dz = 2πiRes(f, i) =
π

2

The result follows by the even-ness of f on the real-axis.

Solution. Let f(z) = z2

z6+1 . Then f is holomorphic except at {a1 :=π/6, a2 := eπ/2, a3 := e5π/6} on
the upper half plane. By residue theorem on the upper half disks, fix R > 0 sufficiently large, we
have ∫ R

−R
f(z)dz +

∫
CR

f(z)dz = 2πi

3∑
j=1

Res(f, aj)

First, we compute Res(f, aj). Let α be a zero of z6 + 1. Then α is a simple pole of f(z). By the
residule formula and L’Hospital Rule, we compute that

Res(f, α) = lim
z→α

(z − α)f(z) = lim
z→α

(z − α)z2

z6 + 1
=

α2

6α5
=

1

6α3

Note that a31 = i, a32 = −i, a33 = i. Hence, we have
∑3
j=1 Res(f, aj) = 1

6i .

Next note that for all z ∈ CR, |f(z)| =
∣∣∣ z2

z6+1

∣∣∣ ≤ |z|2

|z|6−1 = R2

R6−1 =: MR. Therefore by the triangle

inequality for integral, we have that
∣∣∣∫CR f(z)dz

∣∣∣ ≤ πRMR which converges to 0 as R → ∞.

Therefore putting R→∞, we have∫ ∞
−∞

f(z)dz = 2πi

3∑
j=1

Res(f, aj) =
π

3

The result follows by the even-ness of f on the real-axis.

3



Solution. Let ζ1 := e2π/3, ζ2 := e4π/3. Let f(z) = 1
z3+1 . Fix R > 0 sufficiently large.

First by a change of variable, observe that we have the following equality:∫
[Rζ1,0]

f(z)dz = −ζ1
∫
[0,R]

f(w)dw

Second, denote the closed region (a circular sector) bounded by [0, R], [0, Rζ1] by ΩR. Note that f
is holomorphic except at a := eiπ/3 on ΩR.
Next, denote CR the anti-clockwise circular arc from R to ζ1R. Then by the residue theorem, we
have (∫

[Rζ1,0]

+

∫
[0,R]

+

∫
CR

)
f(z)dz = 2πiRes(f, a)

Since a is a simple pole, we compute that

Res(f, a) = lim
z→a

(z − a)f(z) = lim
z→a

z − a
z3 + 1

=
1

3a2
=

1

3ζ1

Next it is easy to show that limR→∞
∫
CR

f(z)dz = 0 Therefore, with the formula in the beginning,
we have

(1− ζ1)

∫ ∞
0

f(z)dz = 2πiRes(f, a) =
2πi

3

1

ζ1

Note that (ζ1(1− ζ1)) = ζ1 − ζ21 = ζ1 − ζ2 = ζ1 − ζ1 = 2i Im(ζ1) =
√

3i. Hence it follows that∫ ∞
0

f(z)dz =
2π

3
√

3
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P.273

Solution. Let g(z) = 1
(z2+b2)2 . Consider f(z) = g(z)eiaz. Then f is holomorphic except at bi on the

upper half plane. By residue theorem on the upper half disks, fix R > 0 sufficiently large, we have∫ R

−R
f(z)dz +

∫
CR

f(z)dz = 2πiRes(f, bi)

First, we compute Res(f, bi). Note that this is an order-2 pole. Take f(z) = h(z)(z − bi)2 where h
is holomorphic non-zero at bi. Then Res(f, bi) = h′(bi) by the residue formula.

Next note that for all z ∈ CR, |g(z)| =
∣∣∣ 1
(z2+b2)2

∣∣∣ ≤ 1
(|z|2−|b|2)2 = 1

(R2−|b|2)2 =: MR which converges

to 0 as R → ∞. By the Jordan Lemma,
∫
CR

f(z)dz =
∫
CR

g(z)eiazdz → 0 as R → ∞. Therefore
putting R→∞, we have ∫ ∞

−∞
f(z)dz = 2πiRes(f, bi)

The result follows by considering the real part of g and its even-ness on the real-axis, plus the
previously computed residue.

Remark. The result can follow without using the Jordan Lemma: note that
∣∣eiaz∣∣ ≤ 1 for z on

the upper half plane as a > 0. In this case, the triangle inequality on integrals still tells you∫
CR

g(z)dz → 0 as R→∞.

Solution. Let g(z) = z3

z4+4 . Consider f(z) = g(z)eiaz. Then f is holomorphic except at β1 :=
√

2eiπ/4,β2:=
√
2e3π/4 on the upper half plane. By residue theorem on the upper half disks, fix R > 0

sufficiently large, we have ∫ R

−R
f(z)dz +

∫
CR

f(z)dz = 2πi

2∑
j=1

Res(f, βj)

First, we compute Res(f, βj). Let β be a zero of z4 + 1. Then β is a simple pole of f(z). By the
residule formula and L’Hospital Rule, we compute that

Res(f, β) = lim
z→β

(z − β)f(z) = lim
z→β

(z − β)z3eiaz

z4 + 1
=
β3eiaβ

4β3
=

1

4
eiaβ

Note that eiaβ1 = eia(1+i) = e−aeia and eiaβ2 = eia(−1+i) = e−ae−ia. Therefore eiaβ1 + eiaβ2 =
e−a2 cos(a). Hence,

∑2
j=1 Res(f, βj) = 1

2e
−a cos(a).

Next note that for all z ∈ CR, |g(z)| =
∣∣∣ z3

z4+4

∣∣∣ ≤ |z|3

|z|4−4 = R3

R4−4 =: MR which converges to 0 as

R → ∞. By the Jordan Lemma,
∫
CR

f(z)dz =
∫
CR

g(z)eiazdz → 0 as R → ∞. Therefore putting
R→∞, we have ∫ ∞

−∞
f(z)dz = 2πi

2∑
j=1

Res(f, βj) = iπe−a cos(a)

By considering the imaginary part of f , we have∫ ∞
−∞

sin(az)z3

z4 + 4
dz =

∫ ∞
−∞

Im

(
eiazz3

z4 + 4

)
= Im

(∫ ∞
−∞

eiazz3

z4 + 4

)
= Im

(∫ ∞
−∞

f(z)dz

)
= πe−a cos(a)
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Solution. Let g(z) = 1
z2+1 . f(z) = eizg(z). Then f is holormophic on the upper half plane except

at z = i. Fix R > 0 to be sufficiently large. Then by the Residue Theorem, we have∫ R

−R
f(z)dz +

∫
CR

f(z)dz = 2πiRes(f, i)

First, note the i is a simple pole. By the residue formula, we have Res(f, i) = limz→i(z − i)f(z) =
e−1/2i.
Next, note that for all z ∈ CR, MR := supz∈CR{|g(z)|} → 0. By the Jordan Lemma, we have∫
CR

f(z)dz → 0 as R→∞.
Therefore, as R→∞, we have ∫ ∞

−∞
f(z)dz = 2πiRes(f, i) = πe−1

By considering the real part we have, ∫ ∞
∞

cos z

z2 + 1
dz =

π

e

The result follows by noting that with a change of variable, we have and taking limit afterards, we
have∫ ∞
−∞

sinx

x2 + 4x+ 5
= lim
R→∞

∫ R−2

−R−2

sinx

x2 + 4x+ 5
= lim
R→∞

∫ R

−R

sin(y − 2)

y2 + 1
dy

= lim
R→∞

∫ R

−R

sin(y) cos(2)− sin(2) cos(y)

y2 + 1
dy = − sin(2)

∫ ∞
−∞

cos y

y2 + 1
dy = −π

e
sin(2)
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Solution. Just follow the steps in question closely.
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P.282

Solution. Let f(z) = eiaz−eibz
z2 . If a = b, then f is the zero function and so the integral is clear. Now

suppose a 6= b. Then f(z) is analytic except at 0. Therefore, for R > ρ > 0, we have by the Cauchy
Goursat Theorem that (∫ −ρ

−R
+

∫ R

ρ

+

∫
−Cρ

+

∫
CR

)
f(z)dz = 0

First note that for all z ∈ CR, |f(z)| =
∣∣∣ eiaz−eibzz2

∣∣∣ ≤ |eiaz|+|eibz||z|2 ≤ 2
R2 =: MR. (Note that∣∣eiaz∣∣ = |e−ay| ≤ 1 with z on the upper half plane). Hence, by the triangle inequality for integrals,

we have
∣∣∣∫CR f(z)dz

∣∣∣ ≤ πRMR which converges to 0 as R→∞.

Next, note that f is analytic on a deleted neighborhood of 0 and 0 is a simple pole of f(z), which
could be verified by considering the Taylor’s expansion of eiaz − eibz. Therefore the residue of f(z)
at 0 is given by

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

eiaz(1− eibz−iaz)
z

= i(a− b) 6= 0

in which the fact that limz→0
ez−1
z = 1 has been used. Hence, by the Indented Contour Approxima-

tion, we have

lim
ρ→0

∫
Cρ

f(z)dz = πiRes(f, 0) = (b− a)π

Combining the two result, we have∫ ∞
−∞

f(z)dz = lim
ρ→0

lim
R→∞

∫ −ρ
−R

f(z)dz +

∫ R

ρ

f(z)dz = lim
ρ→0

lim
R→∞

∫
Cρ

f(z)dz −
∫
CR

f(z)dz = (b− a)π

The result follows by considering the real part of the above integral and further by the even-ness of
it on the real line.

To show the last statement, we plug in a = 1 and b = 2 and note that cosx−cos 2x = −2 sin2(x/2)+
2 sin2(x). A change of variable then gives the result.

Solution. Following the examples in the previous section will do.
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P.287

Solution. All these follow from turning the integral in question to a contour integral using the
substitution z = eiθ. We shall only show the first one.

1. Let z = z(θ) = eiθ where θ ∈ [0, 2π]. Then sin θ = eiθ−e−iθ
2i = z−z−1

2i and dz = ieiθdθ = izdθ.
Hence, we could compute that∫ 2π

0

1

5 + 4 sin θ
dθ =

∫
C

1

iz(5− 2iz + 2iz−1)
dz =

∫
C

1

2z2 + 5iz − 2
dz =

∫
C

1

(2z + i)(z + 2i)
dz

where C denotes the unit circle (oriented anti-clockwise). Let f(z) = 1/2
z+2i and w = −i/2.

Then f is holomorphic inside and on C while w is in the interior of the region bounded by C.
By the Cauchy-Integral Formula (of course you could use the Residue Theorem as well), we
conclude that∫ 2π

0

1

5 + 4 sin θ
dθ =

∫
C

1

(2z + i)(z + 2i)
dz = 2πif(w) = 2πi

1

3i
=

2π

3

2. It is similar to Part 1, but more troublesome when computing the residues. You may use the
L’Hospital rule to simplify the computation

3. Similar to Part 1.

4. Similar to Part 1.
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P.293-294

Solution. (a) Note that f(z) = z2 is meromorphic (in fact holomorphic) on C and f is non-zero
holomophic on C ⊂ C. Hence by Argument Principal, the winding number of f(C) at 0 is given
by

1

2πi
∆C arg f(z) =

1

2πi

∫
C

f ′(z)

f(z)
dz = N(f, C)− P (f, C) = 2− 0 = 2

Hence we have ∆C arg f(z) = 4π

(b) Note that f(z) = 1/z2 is meromorphic on C and f is non-zero holomophic on C ⊂ C. Hence by
Argument Principal, the winding number of f(C) at 0 is given by

1

2πi
∆C arg f(z) =

1

2πi

∫
C

f ′(z)

f(z)
dz = N(f, C)− P (f, C) = 0− 2 = −2

Hence we have ∆C arg f(z) = −4π

(c) Note that f(z) = (2z − 1)7/z3 is meromorphic on C and f is non-zero holomophic on C ⊂ C.
Hence by Argument Principal, the winding number of f(C) at 0 is given by

1

2πi
∆C arg f(z) =

1

2πi

∫
C

f ′(z)

f(z)
dz = N(f, C)− P (f, C) = 7− 3 = 4

which follows from that 1/2 and 0 are order-7 zero and order-3 pole inside the region bounded
by C respectively. Hence we have ∆C arg f(z) = 8π

Solution. To obtain the winding number from a picture, you fix a point and draw a line from the
origin to that point. Then you travel the point along the curve in the assigned direction and count
the number of cycles that line connecting the origin and the initial point has traveled. That number
is the winding number of the curve at 0.
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Solution. (a). Apply Rouche’s Theorem with f(z) = −5z4 and g(z) = z6 + z3 − 2z on |z| = 1

(b). Apply Rouche’s Theorem with f(z) = −5z4 and g(z) = z6 + z3 − 2z on |z| = 1

(c). Apply Rouche’s Theorem with f(z) = −4z3 and g(z) = z7 + z − 1 on |z| = 1

Solution. Apply Rouche’s Theorem on |z| = 2 and |z| = 1 with suitable functions repsectively. Then
the difference is the answer.
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