
MATH 2230A - HW 10 - Solutions
The computation techniques demonstrated in this Homework is EXTREMEMLY important.

Please make sure you are familiar with the techniques
Full solutions at P.84-85 Q5, P.254 Q5, Q6

Commonly missed steps in Purple and common mistakes at the back

Below are some facts useful to this homework (especially for questions on P.84-85).

Theorem 0.1 (Isolation of Zeros). Let f : Ω → C be holomorphic on a domain. Suppose f has
a zero at a ∈ Ω, that is, f(a) = 0. Then there exists a neighborhood B(a, r) of a such that either
f(z) = 0 for all z ∈ B(a, r) or f(z) 6= 0 for all z ∈ B(a, r)\{z}.

Remark. This is easily proven from Taylor Series. In fact by the connectedness of domain, one can
strength the result to that either f is constantly 0 on Ω or f only can have isolated zeros on Ω

Theorem 0.2 (Coincidence Principle for holomorphic functions). Let f : Ω → C be holomorphic
on a (open connected) domain. Suppose f = 0 on D where D ⊂ Ω is a subset containing an
accumulation point1. Then f = 0 on Ω.

Remark. The result basically follows from the isolation of zeros for holomorphic functions. The
assumption that Ω is connected is important as seen from the remark in the Isolation of Zeros.

Corollary 0.3. Let f, g : Ω→ C be holomorphic on a domain. Suppose f = g on some sub-domain
or a line in Ω. Then f = g.

Remark. This is because sub-domains (open-connected subsets) or lines have accumulation points.

Theorem 0.4 (Reflection Principle). Let Ω ⊂ C be a domain that is symmetric along the real-axis,
that is, for all z ∈ C we have z ∈ Ω if and only if z ∈ Ω. Let f : Ω → C be holomorphic. Suppose
that

1. ` := Ω ∩ R is non-empty and lies in the interior of Ω

2. f is real on `.

Then we have f(z) = f(z).

Remark. This basically follows from the co-incidence principle. We first observe that the function
g : Ω → C defined by g(z) = f(z) is holomorphic (by possibly considering the Cauchy Riemann
Equations). Then we show that f = g on `, which is not difficult. Since `, which is a line, contains
an accumulation point, the result follows by extending the equality to the whole domain Ω.

Please refer to HW9 Solutions for Theorems that are related to poles and residues.

1Let D ⊂ C be a subset. Then we call z0 ∈ D an accumulation point if for all neighborhood U := B(z0, r) of z0
where r > 0, we have U ∩ D\{z0} 6= φ. In other words, we can find a sequence (zn) in D with every element not
being z0 such that zn → z0. Roughly speaking, an accumulation point in D are those that are not ”isolated” from
other members in D.
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P.84-85

Solution. Please follow the examples in the textbook.

Solution. We need to show that if Ω ⊂ C is a domain that is symmetric along the real-axis, that is,
for all z ∈ C we have z ∈ Ω if and only if z ∈ Ω, and f : Ω→ C is holomorphic on Ω such that

1. ` := Ω ∩ R is non-empty and lies in the interior of Ω

2. f is purely imaginary on `.

Then we have f(z) = −f(z).

Method 1: Without using the Reflection Principle
Let g(z) = −f(z). Then it suffices to show that h(z) := f(z)− g(z) is constantly 0.
First, we claim that g is holomorphic on Ω. Denote ug, vg the real and imaginary part of g respec-
tively. Then ug(x, y) = −uf (x,−y) and vg(x, y) = vf (x,−y) for all z = x + iy ∈ Ω. Hence, we
further have

∂xug(x, y) = −∂xuf (x,−y) ∂yug(x, y) = ∂yuf (x,−y)

∂xvg(x, y) = ∂xvf (x,−y) ∂yvg(x, y) = ∂y − vf (x,−y)

Hence, by the analyticity of f , we have

∂xug(x, y) = −∂xuf (x,−y) = −∂yvf (x,−y) = ∂yvg(x, y)

∂yug(x, y) = ∂yuf (x,−y) = −∂xvf (x,−y) = −∂xvg(x, y)

Therefore, g satisfies the CR equations throughout Ω with continuously differentiable partial deriva-
tives. Hence, g is holomophric on Ω. Therefore h := f − g is holomorphic on Ω.
Now let z ∈ ` ⊂ R, then g(z) = −f(z) = −f(z) = f(z) by assumption. Hence h(z) = f(z)−g(z) = 0
for all z ∈ `. Since h is holomorphic (as the difference of holomorphic functions) and ` is a line
(which contains an accumulation point), we can extend the equality to the whole domain Ω by the
coincidence principle.

Method 2: Using the Reflection Principle
Define g(z) := if(z). Then g is holomorphic as it is just a scalar multiple of the holomrophic function
f and g is real on `. Hence by the Reflection Principle, we have that if(z) = g(z) = g(z) = if(z) =
−if(z) for all z ∈ Ω. It follows that f(z) = −f(z)⇔ f(z) = −f(z) for all z ∈ Ω.

Remark. Please write clearly every time the domain of functions you are referring to, especially for
this question.
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P.246

Solution. 1. f(z) = z+1
z2+9 . f has isolated singularities at ±3i. Note f(z) = 1

z±3ig(z) where

g(z) := z+1
z∓3i is holomorphic non-zero at z = ∓3i. This shows that f has a simple pole at ±3i.

We compute the residues by: Res(f,±3i) = limz→±3i(z ∓ 3i)f(z) = ∓3i+1
∓3i∓3i = 3+±i

6 .

2. f(z) = z2+2
z−1 . f has isolated singularities at . Note f(z) = 1

z−1g(z) where g(z) := z2 + 2 is
holomorphic non-zero at z = 1. This shows that f has a simple pole at 1.
We compute the residues by: Res(f, 1) = limz→1(z − 1)f(z) = g(1) = 3.

3. f(z) = ( z
2z+1 )3. f has isolated singularities at −1/2. Note f(z) = 1

(z+1/2)3 g(z) where g(z) :=

(z/2)3 is holomorphic non-zero at z = −1/2. This shows that f has a pole of order 3 at 1.

We compute the residues by: Res(f,−1/2) = d2

dz2

∣∣∣
z=−1/2

(z+1/2)3f(z)
2! = g′′(−1/2)

2 = −3
16 .

4. f(z) = ez

z2+π2 . f has isolated singularities at ±πi. Note f(z) = 1
z±πig(z) where g(z) := ez

z∓πi
is holomorphic non-zero at z = ∓πi. This shows that f has a simple poles at ∓πi.
We compute the residues by: Res(f,∓πi) = limz→∓πi(z ± πi)f(z) = g(∓πi) = e∓π

∓2πi = ∓ i
2π .

P.254

Solution. (a) Let Ω be the closed region bounded by C. Let f(z) = tan z. Then tan z = sin z
cos z . Note

that

cos z = 0⇐⇒ ezi + e−zi = 0⇐⇒ e2zi = −1⇐⇒ 2zi ∈ log(−1)

⇐⇒ 2zi = (2n+ 1)πi,∃n ∈ Z⇐⇒ z =
(2n+ 1)π

2
,∃n ∈ Z

Hence f(z) is not analytic except at zn := (2n+1)π
2 for some n ∈ Z. It is easy to see that these

singularities of f are isolated.
Note that ±π2 ∈ Ωo and f is holomorphic on Ω (which is simply connected) except at these 2
points. Hence, by Residue Theorem, we have∫

C

tan zdz = 2πi(Res(f, π/2) + Res(f,−π/2))

Next we check that these singularities are poles and compute their orders. Note that cos(zn) = 0
where zn were defined to be the singularities, but sin(zn) = (cos(z))′(zn) = ±1 6= 0. Hence all
these isolated singularities are zeros of order 1 for cos z. This implies for all n ∈ Z, there
exists φn(z) holomorphic non-zero at zn and locally(in a neighborhood of zn), we have that
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cos z = (z − zn)φn(z). Therefore for all n ∈ Z, locally we have f(z) = tan(z) = sin z
(z−zn)φn(z) .

Note that sin z, φn(z) are all holomorphic non-zero at zn. Hence, f has simple poles at zn for
all n ∈ Z.
Since all these isolated singularities are simple poles, we compute the residues as follows:

Res(f, π/2) = lim
z→π/2

(z − π/2)
sin z

cos z
= lim
w→0

w
sin(w + π/2)

cos(w + π/2)
= lim
w→0

w cosw

− sinw
= −1

and

Res(f,−π/2) = lim
z→−π/2

(z + π/2)
sin z

cos z
= lim
w→0

w
sin(w − π/2)

cos(w − π/2)
= lim
w→0

−w cosw

sinw
= −1

We have used the fact that limw→0
sinw
w = 1. Therefore, we have

∫
C

tan zdz = 2πi(−1 − 1) =
−4πi.

(b) Let Ω be the closed region bounded by C. Let f(z) = 1
sinh 2z . Note that

sinh 2z =0⇐⇒ e2z − e−2z = 0⇐⇒ e4z = 1⇐⇒ 4z ∈ log(1)

⇐⇒ 4z = 2nπi,∃n ∈ Z⇐⇒ z =
nπ

2
i,∃n ∈ Z

Hence f(z) is not analytic except at zn := nπ
2 i for some n ∈ Z. It is easy to see that these

singularities of f are isolated. Note that 0,±π/2 ∈ Ω0 and f is holomorphic on Ω except at
these 2 points. Hence, by Residue Theorem, we have∫

C

f(z)dz = 2πi(Res(f, 0) + Res(f, iπ/2) + Res(f,−iπ/2))

Next, we show that these singularities are poles and compute their orders. Note that for all n ∈ Z,
sinh(2zn) = 0, but (sinh 2z)′(zn) = 2 cosh(2zn) = 2 cosh(nπi) = 2 cos(nπ) 6= 0. Hence all these
isolated singularities are zeros of order 1 for sinh 2z, which implies for all n ∈ Z, there exists φn(z)
holomorphic non-zero at zn and locally(in a neighborhood of zn), we havesinh 2z = (z−zn)φn(z).
Therefore for all n ∈ Z, locally we have f(z) = 1

sinh(z) = 1
(z−zn)φn(z) where φn(z) are all

holomorphic non-zero at zn. Hence, f has simple poles at zn for all n ∈ Z.
Since all these isolated singularities are simple poles, we compute the residues as follows: Let a be

an isolated singularity and let ga(z) be holomorphic non-zero at a such that locally ga(z)
z−a = f(z).

Let h(z) := sinh(z), then (z)ga(z) = z − a locally at 0. By considering Laurent(Taylor) Series
at a, we have

sinh(2z)ga(z) = h(z)ga(z)

(∑
i=0

h(i)(a)(z − a)j

j!

)∑
j=0

g
(j)
a (a)(z − a)j

j!


=

(
h(a) + h′(a)(z − a) +

h′′(a)

2
(z − a)2 + . . .

)(
ga(a) + g′a(a)z +

g′′a(a)

2
(z − a)2 + . . .

)
= z − a

By comparing like terms, as sinh(a) = h(a) = 0 we have h′(a)ga(a) = 1. Therefore, ga(a) =
1/h′(a). Since h′(a) = (sinh(2z))′(a) = 2 cosh(2a), we have h′(0) = 2, h′(iπ/2) = 2 cos(π) =
−2, h′(−iπ/2) = 2 cos(−π) = −2. Hence, ga(a) = 1/2,−1/2,−1/2 at a = 0, iπ/2,−iπ/2 respec-
tively. Lastly but not least, we have for all singularities a of f ,

Res(f, a) = lim
z→a

z − a
sinh 2z

= lim
z→a

z − a
h(z)

= lim
z→a

ga(z) = ga(a)

Hence, we have∫
C

f(z)dz = 2πi(Res(f, 0) + Res(f, iπ/2) + Res(f,−iπ/2))

= 2πi
∑

a=0,iπ/2,−iπ/2

(ga(a)) = 2πi(1/2− 1/2− 1/2) = −πi
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Remark. For part b, the comparing like term technique is literally the same as the long division.
Both follows from the convergence of Cauchy Products of Taylor’s Series.

Solution. Let h(z) = z2 sin z. Note that sin z = 0 if and only if z = nπ for some n ∈ Z. Furthermore,
if sin(z) = 0, (sin)′(z) = cos(z) 6= 0, so all zeros of sin z are of order 1.Therefore it is clear that h has
an order 3 zero at 0 while it has order 1 zeros at nπ for all 0 6= n ∈ Z. Hence f(z) := 1/h(z) = 1

z2 sin z
has an order-3 pole at 0 and simple poles at nπ where 0 6= n ∈ Z.
If n 6= 0, then the residue at nπ of f is given by

Res(f, nπ) = lim
z→nπ

(z − nπ)f(z) = lim
w→0

wf(w + nπ) = lim
w→0

1

(w + nπ)2
w

sin(w + nπ)
=

(−1)n

n2π2

If n = 0, then f(z) = g0(z)/z3 locally at 0 for some g0 holomorhpic non-zero at 0. Hence z =
g0(z) sin(z) locally at 0. By considering Taylor Series at 0 we have

z =

(
g0(0) + g′0(0)z +

g′′0 (0)z2

2
+ . . .

)
(z − z3

3!
+
z5

5!
− . . .)

Hence, by comparing like terms (for z, z3), we have the system of equations:

g0(0) = 1

g′′0 (0)

2
− g0(0)

3!
= 0

So, g′′0 (0) = 1/3. Hence, we can compute the residue of f at 0 by

Res(f, 0) =
d2

dz2

∣∣∣∣
z=0

z3f(z)

2!
=

d2

dz2

∣∣∣∣
z=0

g0(z)

2!
=
g′′(0)

2
=

1

6

Fix N ∈ N. Let ΩN be the closed region bounded by CN . Observe that nπ ∈ ΩoN if and only if
|n| ≤ N and f is holomorphic on Ω except only at nπ ∈ ΩoN . Hence, by the Residue Theorem, we
have

1

2πi

∫
CN

dz

z2 sin z
=

1

2πi

∫
CN

f(z)dz =

N∑
n=−N

Res(f, nπ) =
1

6
+

N∑
n=−N,n6=0

(−1)n

n2π2
=

1

6
+ 2

N∑
n=1

(−1)n

n2π2

We then finally have ∫
CN

dz

z2 sin z
= 2πi

[
1

6
+ 2

N∑
n=1

(−1)n

n2π2

]
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As it is given that the integral tends to 0 as N → ∞, we can conclude by simply taking limit for
the modulus of the right-hand side above that

∞∑
n=1

(−1)n+1

n2
=
π2

12

Remark. In fact the the integral tends to zero follows from the following: first we note the inequality∣∣∣∣∫
CN

dz

z2 sin z

∣∣∣∣ ≤ ∫
CN

∣∣∣∣ 1

z2 sin z

∣∣∣∣|dz|
Then we observe sin z = sin(x+ iy) = sinx cosh(y)+i sinh(y) cos(x) and we have |sin z|2 = sin2(x)+
sinh2(y) So, when x = ±(N + 1/2)π, N ∈ N, we have |sin z| ≥ |sinx| = 1. When y = ±(N + 1/2)π,
we have |sin z| ≥ |sinh y| = |sinh(N + 1/2)π| ≥ sinh(π/2) (as sinh is increasing on positive real-
axis). Combining these observations, |sin z| ≥ A where A := max{1, sinh(π/2)} for all z on CN is
independent of N . Together with the fact that |z| ≥ (N +1/2)π on CN , we can further approximate
the above inequality by∣∣∣∣∫

CN

dz

z2 sin z

∣∣∣∣ ≤ ∫
CN

∣∣∣∣ 1

z2 sin z

∣∣∣∣|dz| ≤ |CN |
A(N + 1/2)2π2

=
(4N + 2)π

A(N + 1/2)2π2

It the follows that the integral tends to 0 as N →∞
Remark. With the fact that

∑∞
n=0

1
n converges absolutely (how?), and hence its unconditional con-

vergence, we could deduce from this question the solution to the famous Basel problem:

∞∑
n=1

1

n2
=
π2

6
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