THE CHINESE UNIVERSITY OF HONG KONG MATH2230 Tutorial 9

(Prepared by Tai Ho Man)

0.1 Differentiation and Integration of Larrent Series

Theorem 1. Suppose that f is analytic in an annulus $A = \{z \in \mathbb{C} \mid r < |z - z_0| < R\}$. For any compact subset K of A, the Larrent series of f converges to f uniformly and absolutely for all $z \in K$.

Theorem 2. Suppose that f is analytic in an annulus $A = \{z \in \mathbb{C} \mid r < |z - z_0| < R\}$. For any $a \in A$, we can differentiate the Larrent series of f term by term. That is,

$$f'(a) = \sum_{n=1}^{\infty} na_n (a - z_0)^{n-1} - \sum_{n=1}^{\infty} \frac{nb_n}{(a - z_0)^{n+1}}$$

Theorem 3. Suppose that f is analytic in an annulus $A = \{z \in \mathbb{C} \mid r < |z - z_0| < R\}$. For any contour C inside A, we can integrate the Larrent series of f term by term. That is,

$$\int_{C} f(z)dz = \sum_{n=0}^{\infty} a_n \int_{C} (z - z_0)^n dz + \sum_{n=1}^{\infty} b_n \int_{C} \frac{1}{(z - z_0)^n} dz$$

Remark: Theorem 2 and 3 are a immediate consequence of theorem 1.

Be careful that the contour in the above theorem may not be closed! If the contour is closed and contains z_0 , we see that all the term are zero except the term $b_1 \int_C \frac{1}{(z-z_0)} dz$, it is because the terms $(z-z_0)^n$ have antiderivative in A except $\frac{1}{(z-z_0)}$ (n=-1). This leads to an important theorem. Before that, we introduce some definitions.

0.2 Three Types of Isolated Singularity

There are three types of isolated singularity. We suppose that f is analytic function in $B_R(a) \setminus \{a\}$. (hence a is isolated singularity)

Definition 1. The point a is called a removable singularity if there is an analytic function \widetilde{f} in $B_R(a)$ such that $\widetilde{f} = f$ in $B_R(a) \setminus \{a\}$ ($\widetilde{f} = f$ except at z = a).

Remark: It is the best behaved singularity, it is 'almost' an analytic function. From the definition, the singularity is removed by defining \tilde{f} .

Theorem 4. The point a is a removable singularity iff $\lim_{z\to a}(z-a)f(z)=0$.

Definition 2. The point a is called a pole if $\lim_{z\to a} |f(z)| = \infty$.

Theorem 5. If f has a pole at z = a, then there is a positive integer m and an analytic function g in $B_R(a)$ with $g(a) \neq 0$ such that $f = \frac{g}{(z-a)^m}$. This m is called the order of pole of f at z = a.

Definition 3. The point a is called an essential singularity if it is not neither removable singularity nor pole.

Remark: In this definition, we can see that $\lim_{z\to a}|f(z)|$ fails to exist, it will converges to different finite value and ∞ according to different path taken.

Theorem 6. (Casorati-Weierstrass theorem) If f has essential singularity at z = a, then for every $c \in \mathbb{C}$, there is a sequence z_n converges to a such that $|f(z_n) - c| \to 0$.

Remark: It tells us that given any $c \in \mathbb{C}$, there is z arbitrary close to a such that f(z) arbitrary close to c. In other words, f(z) can take any complex value, with at most one exception value, near z = a. (by Great Picard's Theorem)

In the view of Larrent series, we have the following conclusion,

Theorem 7. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^m \frac{b_n}{(z-a)^n}$ be its Larrent series in $B_R(a) \setminus \{a\}$, then

- z = a is a removable singularity iff $b_n = 0$ for $n \ge 1$,
- z = a is a pole of order m iff $b_m \neq 0$ and $b_n = 0$ for $n \geq m+1$
- z = a is an essential singularity iff $b_n \neq 0$ for infinitely many integers $n \geq 1$. (not necessary every n!)

Remark: This theorem comes immediately from Theorem 4 and 5.

0.3 Residue Theory

Definition 4. Suppose that f is analytic in some punctured disk $D = \{z \in \mathbb{C} \mid 0 < |z - z_0| < R\}$. The coefficient of $\frac{1}{(z-z_0)}$ in the Larrent series is called the residue of f at the singular point $z=z_0$, which is denoted by $\underset{z=z_0}{\operatorname{Res}} f$. If we write $f(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$, then $\underset{z=z_0}{\operatorname{Res}} f = b_1$.

Theorem 8. (Cauchy Residue Theorem) Suppose C is a closed contour in positive sense. If f is analytic inside and on C except finite number of singular points z_k inside C, then

$$\int_{C} f dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f$$

Remark: Actually it is exactly Cauchy integral formula in the view of power series.

Remark: In other words, to calculate the integral $\int_C f dz$ is to calculate the residue of f at the singular points.

0.4 Exercise:

- 1. Compute $\int_C e^{-\frac{1}{z}} dz$ where C representing the contour $\{|z|=3\}$.
- 2. Compute $\int_C \frac{\pi}{z^2 \sin(\pi z)} dz$ where C representing the contour $\{|z| = \frac{1}{2}\}$.