THE CHINESE UNIVERSITY OF HONG KONG MATH2230 Tutorial 8

(Prepared by Tai Ho Man)

Theorem 1. (Taylor Series) Suppose that f is analytic in a disk $\{z \in \mathbb{C} \mid |z - z_0| < R\}$. Then f has the power series representation centred at $z = z_0$

$$
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \quad \text{for all } z \in \{z \in \mathbb{C} \mid |z - z_0| < R\}.
$$

Remark : The Taylor series of f centred at a given point is unique. $(a_n$ is unique)

Remark : This means that the infinite series converges for any z in the disk. (may not uniform!)

Remark : If f is analytic at some point z_0 , then it must be analytic in some small disk $\{z \in$ $\mathbb{C} \mid |z - z_0| < \varepsilon$ such that we have a convergent Taylor series there.

Remark : If f is entire, then the Taylor series converges in the domain $\mathbb{C} = \{z \in \mathbb{C} \mid |z - z_0| < \infty\}$ for any z_0 .

Suppose we have a function f which admits a singularity at $z = z_0$ such that $\lim_{z \to z_0} |f(z)| = \infty$. (Or other types of singularity at which $f(z)$ is not welled-defined, we will discuss later.) It is clear that we do not have a Taylor Series for f centred at $z = z_0$ since $a_0 = f(z_0)$ is not defined! $(a_n = z_0, a_n)$ $f^{(n)}(z_0)$ $n!$ are defined as well!)

Theorem 2. (Laurent Series) Suppose that f is analytic in an annulus $\{z \in \mathbb{C} \mid R_1 < |z-z_0| < R_2\}$, then f has the power series representation centred at $z = z_0$

$$
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} \quad \text{for all } z \in \{z \in \mathbb{C} \mid R_1 < |z - z_0| < R_2\}.
$$

where $a_n =$ $\frac{1}{2\pi i}\int_C$ $f(z)dz$ $\frac{f(z)}{(z-z_0)^{n+1}}$ $(n = 0, 1, ...)$ and $b_n =$ $\frac{1}{2\pi i}\int_C$ $f(z)(z-z_0)^{n-1}dz$ $(n = 1, 2, ...)$. C is any closed contour in the annulus.

Remark : The formula for a_n and b_n here may be difficult to compute.

An important technique to compute the whole Laurent series is the following proposition :

Proposition 1. (Geometric Sum) If $|z| < 1$, then $\frac{1}{1}$ $1-z$ $=$ \sum^{∞} $n=0$ z^n .

Example 1. Find the Laurent series of $f =$ 1 $z^2 + 4$ centred at $z = 2i$ in the region $\{|z - 2i| > 4\}$

First, we observe that $\frac{1}{1}$ $\frac{1}{z^2+4}$ = $\begin{pmatrix} 1 \end{pmatrix}$ $z - 2i$ \setminus $\begin{array}{c} 1 \end{array}$ $z + 2i$ \setminus . We shall be careful that $z = 2i$ is a singularity of f so it makes sense to consider the Laurent series of f. If we can find the Laurent series for $\frac{1}{\sqrt{1-\frac{1}{n}}}$ $z + 2i$, then it is done since $\frac{1}{\cdots}$ $z - 2i$ is already 'good'.

Second we find the Laurent series for $\frac{1}{1}$ $z + 2i$ by proposition 1. We observe that

$$
\frac{1}{z+2i} = \frac{1}{z-2i+4i} = \frac{1}{z-2i} \frac{1}{\left(1 - \left(-\frac{4i}{z-2i}\right)\right)}
$$

Since $4 < |z - 2i| \Rightarrow$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 4i $z - 2i$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $<$ 1. By proposition 1,

$$
\frac{1}{\left(1-\left(-\frac{4i}{z-2i}\right)\right)} = \sum_{n=0}^{\infty} \left(-\frac{4i}{z-2i}\right)^n
$$

Therefore,

$$
f = \frac{1}{z^2 + 4} = \left(\frac{1}{z - 2i}\right)\left(\frac{1}{z + 2i}\right) = \sum_{n=0}^{\infty} \frac{(-4i)^n}{(z - 2i)^{n+2}}
$$

Example 2. Try to find a Laurent series of example 1 in the region $\{0 < |z - 2i| < 4\}$.

Example 3. Find the Laurent series of $\frac{1}{1}$ $z \sin z$ in the region ${0 < |z| < \frac{\pi}{2}}$ 2 }.

Method of long division : We see that $\sin z = z - \frac{z^3}{2!}$ $rac{1}{3!}$ + z^5 $rac{z^5}{5!} - \frac{z^7}{7!}$ $\frac{\gamma}{7!}$ + ..., by long division, we have

$$
\frac{1}{\sin z} = \frac{1}{z} + \frac{z}{6} + \frac{7z^3}{360} + \dots
$$

The disadvantage is that we can not obtain the whole series. However, in this case, we do not have a closed form of Laurent series for $\frac{1}{1}$ $\sin z$.

Exercise:

- 1. Find the Laurent series of $\frac{z}{1+z}$ $\frac{z}{1+z^3}$ in the region $\{0<|z|<1\}$ and $\{|z|>1\}$ respectively.
- 2. Find the Laurent series of $\frac{z}{(z-1)(z-3)}$ in the region $\{0 < |z-1| < 2\}$.