Math 2230A, Complex Variables with Applications

1. Use established properties of moduli to show that when $|z_3| \neq |z_4|$

$$\frac{Re(z_1+z_2)}{|z_3+z_4|} \le \frac{|z_1|+|z_2|}{||z_3|-|z_4||}$$

- 2. Verify that $\sqrt{2}|z| \ge |Rez| + |Imz|$. Suggestion:Reduce this inequality to $(|x| - |y|)^2 \ge 0$.
- 3. In each case, sketch the set of points determined by the given condition:
 - (a) |z 1 + i| = 1;
 - (b) |z+i| < 3;
 - (c) $|z 4i| \ge 4$.
- 4. Using the fact that $|z_1 z_2|$ is the distance between two points z_1 and z_2 , give a geometric argument that |z 1| = |z + i| represents the line through the origin whose slope is -1.
- 5. Use properties of conjugates and moduli established in Sec.6 to show that
 - (a) $\overline{\overline{z}+3i} = z 3i;$
 - (b) $\overline{iz} = -i\overline{z};$
 - (c) $\overline{(2+i)^2} = 3 4i;$
 - (d) $|(2\bar{z}+5)(\sqrt{2}-i)| = \sqrt{3}|2z+5|.$
- 6. Sketch the set of points determined by the condition
 - (a) $Re(\bar{z}-i) = 2;$
 - (b) $|2\bar{z} + i| = 4.$
- 7. Show that

$$|Re(2 + \bar{z} + z^3)| \le 4$$
 when $|z| \le 1$.

8. By factoring $z^4 - 4z^2 + 3$ into two quadratic factors and using inequality (2), Sec. 5, show that if z lies on the circle |z| = 2, then

$$|\frac{1}{z^4 - 4z^2 + 3}| \le \frac{1}{3}$$

9. Find the principal argument Argz when (a) $z = \frac{-2}{1+\sqrt{3}i}$; (b) $z = (\sqrt{3} - i)^6$.

- 10. Show that (a) $|e^{i\theta}| = 1$; (b) $\overline{e^{i\theta}} = e^{-i\theta}$.
- 11. Using the fact that the modules $|e^{i\theta} 1|$ is the distance between the points $e^{i\theta}$ and 1(see Sec.4), give a geometric argument to find a value of θ in the interval $0 \le \theta < 2\pi$ that satisfies the equation $|e^{i\theta} 1| = 2$.
- 12. By writing the individual factors on the left in exponential form, perform the needed operations, and finally changing back to rectangular coordinates, show that
 - (a) $i(1 \sqrt{3}i)(\sqrt{3} + i) = 2(1 + \sqrt{3}i);$
 - (b) 5i/(2+i) = 1 + 2i;
 - (c) $(\sqrt{3}+i)^6 = -64;$
 - (d) $(1 + \sqrt{3}i)^{-10} = 2^{-11}(-1 + \sqrt{3}i).$
- 13. Let z be a nonzero complex number and n a negative integer (n=-1, -2, ...). Also, write $z = re^{i\theta}$ and m = -n = 1, 2, ... Using the expressions

$$z^{m} = r^{m}e^{im\theta}$$
 and $z^{-1} = (\frac{1}{r})e^{i(-\theta)}$,

verify that $(z^m)^{-1} = (z^{-1})^m$ and hence that the definition $z^n = (z^{-1})^m$ in Sec.7 could have been written alternatively as $z^n = (z^m)^{-1}$.

14. Establish the identity

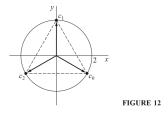
$$1 + z + z^{2} + \dots + z^{n} = \frac{1 - z^{n+1}}{1 - z} \quad (z \neq 1)$$

and use it to derive *Lagrange's trigonometric identity:*

$$1 + \cos\theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin[(2n+1)\theta/2]}{2\sin(\theta/2)} \quad (0 < \theta < 2\pi).$$

Suggestion: As for the first identity, write $S=1 + z + z^2 + \cdots + z^n$ and consider the difference S - zS. To derive the second identity, write $z = e^{i\theta}$ in the first one.

- 15. Find the square roots of (a) 2i;(b) $1 \sqrt{3}i$ and express them in rectangular coordinates.
- 16. Find the three cube roots $c_k(k = 0, 1, 2)$ of -8i, express them in rectangular coordinates, and point out why they are as shown in Fig.12.



- 17. Find $(-8 8\sqrt{3}i)^{\frac{1}{4}}$, express the roots in rectangular coordinates, exhibit them as the vertices of a certain square, and point out which is the principal root.
- 18. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of certain regular polygons, and identify the principal root: $(a)(-1)^{\frac{1}{3}};$ $(b)8^{\frac{1}{6}}.$
- 19. Find the square roots of $(a)2i;(b)1-\sqrt{3}i$ and express them in rectangular coordinates.
- 20. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of certain regular polygons, and identify the principal root: $(a)(-1)^{\frac{1}{3}};$ $(b)8^{\frac{1}{6}}.$