MATH5011

Exercise 5 Suggested Solution

Problems 2 and 3 are optional. In Problems 6, 7 and 8 we continue the study of
the n-dimensional Lebesgue measure starting in Exercise 3. In Problems 9-11 we
review the basic facts on the Cantor set. Both topics will be further discussed in

Lecture 6.

(1) Let f: X — (—o0,00] be Ls.c. (lower semi-continuous) where X is a topo-
logical space. Show that
(a) af is Ls.c. Ya >0,
(b) g l.s.c = min{f, g} ls.c,
(¢) fals.c = supf, ls.c.,
(d) g ls.c. = f+gls.c.

(e) co>f>0=1/fis us.c.
Solution:

(a) When a =0,
X, ift <0,

o, ift >0,

(af) (8, 00]) =

which is clearly open. When a > 0, the assertion follows from
(@) (t,00]) = {w s af(z) > £} = F((t/a, ]).
(b) It follows from

(min{f,¢})"((t,0]) = {r€ X : f(x)>tand g(z) >t}

= 7t 00]) N g ((t,o0]).



(c) Tt follows from

-1
(sup fa) (t,o0] = {zxeX:f,>tfor some a}

= U o).

(d) It follows from

(f+g9) ' (t,oc] = {z€X: f(x)+g(x) >t}
= Jfre X f@)>r>t—g(x)}
reQ
= UG (ool g (¢ = 7 00]).
reQ

(e) It suffices to check that for any real number t, we have{z € X : —

t} is open. Case 1 (¢ is non-negative).

1
{xeX.—m>t}:{xeX.—1>tf(m)}:¢.

Case 2 (t is negative).

{:L‘EXI—L>t}={l’€X:—1>tf($)}={I€Xi—%<f(:L‘)}

()

is open by lower semi-continuity of f.

(2) Let X be a locally compact Hausdorff space. Let f > 0 be Ls.c.. Show that

f=sup{lg:g9€C(X), g>0, g <[}

(Hint: Use Urysohn’s lemma to construct, for 0 < a < f(xg), g(zo) = a,

g €10,a], etc.)



Solution: If f(x¢) = 0, then g(z) = 0 satisfies condition. If f(z() > 0, for
e >0, we need to find a l.s.c g, f > g > 0 and g(x¢) > f(z9) —e. By ls.c, 3

open set G 3 xq s.t.
f(z) > f(zg) —e,Vx € G.

Fix Gy 3 x9, open, G is compact and G; C G. Using Urysohn’s lemma, 3o,
0<p<1 ¢=1o0n Gy, spty CG. Then g(x) = (f(z¢) — €)p(x) satisfies
g(x) < f(z),Vz € G and

g(wo) = (f(z0) — €)p(x0) = f(20) — € < f(20).

Let X be a compact topological space. Show that every l.s.c function from

X to R attains its minimum, that is, there exists some x € X such that

flz) < fly), Yy € X.
Solution: Let f: X — R Ls.c, X compact. First, we claim that 9 m s.t.

f(z) >m, Vo € X.

G, ={z: f(x) > n},n € Z is open. By compactness of X,

o] N
x=G.=x=JG.
n=1 n=1

Therefore f(z) > N. Second, let {x,}, f(x,) = inf f=m. F; ={z: f(z) <

m +1/7} is non-empty closed set, so

(F#¢
j=1



and

(o9}

Juo € ﬂﬁ}'uf(xO) <m= f(zo) =m.

j=1
Show that every semicontinuous function is a Borel function.
Solution: Let f be a lower semicontinuous function. As every open set in
[—00,00] can be written as a countable union of (a,b), [00,b), (a,o0] and
f takes value in (—oo,00]. Therefore it suffices to show that f~!(a,b) and
f~Y(a, oo] are Borel sets. By the proposition 2.14, the later set is an open set

and hence is a Borel set. X \ f~!(a,00] = f~!(—00, a] is closed and
f_l(—OO,CL) = U f_l(—oo,a - 1/”]
n=1
is a Borel set. Therefore

f_l(a7 b) - f_l(—OO, b) N f_l(av OO]

is a Borel set. We have the preimage of open set of f is Borel set, so f is

Borel function. the case for upper semicontinuos is similar.

Let f : R® — R be Lebesgue measurable. Show that there exist Borel
measurable functions g, h, g(z) < f(z) < h(x) for all x € R"™ such that
g(x) = h(x) a.e.

Solution: As Lebesgue measure on R" is o-finite and outer regular, we apply
Proposition 2.17 of Chapter 2 and obtain a Borel function g and a null set N
s.t.

f(z) = g(x),Vx € R\ N.

By outer regularity of Lebesgue measure, 3G set W s.t W is Lebesgue mea-

sure zero and N C W. We define two Borel functions in the following way,



g(x), ifz e R"\ W,

—o0, ifzxeW,

j(x), if xR\ W,
oo, ifxeW,

Obviously, g and h are Borel functions s.t

g(x) < f(z) < h(z),Vz € R"

and

Let A be a Borel measure and p a Riesz measure on R” such that A(G) = u(G)
for all open sets GG. Show that A coincides with p on B.
Solution: Let E be a Borel set. Ve > 0,3 closed set F' C E and open set
G D FE st

pG\F) <e,

SO

(@) < p(F) + G\ F) < u(E) +e.

As G\ Fisopen, A\(G\ F) = u(G\ F) < ¢, s0



=
5
A
=
)
[
=
Q)
A

AF) + MG\ F)

IN

ME) + ¢ = u(E) < \E).

(7) A characterization of the Lebesgue measure based on translational invariance.
Let (R™, B, i) be a Borel measure space whose measure y is translational in-
variant and is nontrivial in the sense that there exists some Borel set A such
that ©(A) € (0,00). Show that there exists a positive constant ¢ such that
cp is the restriction of the Lebesgue measure on B. Hint: First show that
u(C) = pu(C) for every open cube C and then appeal to the problem above.
Solution:We first claim that u(R) > 0 whenever R is a cube. By the as-

sumption, 3A € B s.t.u(A) > 0. Moreover

A= G(AQBJ‘),

Jj=1

where B; = B;(0) ball.

u(A) <Y (AN B;) = JAN B, u(AN By) > 0.
Jj=1

Therefore we may assume that 3 bound set A s.t. u(A) > 0. By translational
invariance, we may cover A with finitely many copy of R, then we know that
u(R) > 0. By a problem in Exercise 3 we know that every open G can be

written as

G = U R;, R; almost disjoint closed cubes .

J

Again by the translational invariance of u, we have the face of cube R are of



M measure Zero and

Hence V open G,

By Problem 6, we are done.

Let K be compact in R" and K¢ = {x : dist(x, K) < €} be open. Show that
LK) — LK) as € — 0.
Solution: Since K is a bounded set due to compactness, K¢ is also bounded

for any € > 0. Observe that K = N K* also due to compactness of K.

Since { K'/¥}%° | is a descending sequence of sets, one has

LME) =LV EYF) = lim L"(K'F).
et k—o00

Let A and B be non-empty measurable sets in R™ such that (1 — A\)A + AB
is also measurable for all A € (0,1). Show that Brunn-Minkowski inequality

is equivalent to either one of the following inequalities:

(a) £7((1—=A\)A+AB) > (1 — \)L"(A) + A\L™(B).

(b) £"((1 = X)A+ AB) > min {L"(A), L"(B)}.

Solution: By prop 3.2 of chapter 3, we know that for all Lebesgue measurable

set A and and real number ¢, cA is also Lebesgue measurable and

L"(cA) = |e["L"(A).



Brunn-Minkowski inequality = a):

LM(1=NA+AB)" > L1 = NA)Y" + L (AB)Y
= (1=NLY A"+ AL (B)V".

a) = b):

LML= NA+AB)™ > (1= NL (A" AL(B)Y
> (1—=X)min{£"(A),L"(B)} + Amin {£"(A4),L"(B)}
min {£"(A),L"(B)}.

b) = Brunn-Minkowski inequality: Now let A, B be measurable sets s.t.
A + B is also measureable. W.L.O.G., A and B are of finite measure. If A

or B is measure zero, we are done. We may suppose

L"(A) and L"(B) > 0.

,Cn(B)l/n

Let J = L"(A)Y"+ LY(B)Y/" > 0, A = € (0,1), by inner regularity

for sufficiently small ¢, K7 C A, K5 C B non empty compact sets s.t.
En(A \ Kl) < E.

and

En(B \ KQ) < E.



En(AjB) . ﬁn(Klij)
K, Ky
= L”((l—/\)J(l_A)nL/\ﬁ)
Ky Ko
2 min{ﬁ”(J(l_A)), (ﬁ)}
> 1 -

 min {£%(A), £*(B)}’

and the result follows by taking ¢ — 0.



