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Exercise 5 Suggested Solution

Problems 2 and 3 are optional. In Problems 6, 7 and 8 we continue the study of

the n-dimensional Lebesgue measure starting in Exercise 3. In Problems 9-11 we

review the basic facts on the Cantor set. Both topics will be further discussed in

Lecture 6.

(1) Let f : X → (−∞,∞] be l.s.c. (lower semi-continuous) where X is a topo-

logical space. Show that

(a) αf is l.s.c. ∀α ≥ 0,

(b) g l.s.c ⇒ min{f, g} l.s.c,

(c) fα l.s.c ⇒ sup
α
fα l.s.c.,

(d) g l.s.c. ⇒ f + g l.s.c.

(e) ∞ > f > 0 ⇒ 1/f is u.s.c..

Solution:

(a) When α = 0,

(αf)−1((t,∞]) =

 X, if t < 0,

φ, if t ≥ 0,

which is clearly open. When α > 0, the assertion follows from

(αf)−1((t,∞]) = {x : αf(x) > t} = f−1
(
(t/α,∞]

)
.

(b) It follows from

(min{f, g})−1((t,∞]) = {x ∈ X : f(x) > t and g(x) > t}

= f−1((t,∞]) ∩ g−1((t,∞]).
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(c) It follows from

(
sup
α
fα

)−1
(t,∞] = {x ∈ X : fα > t for some α}

=
⋃
α

f−1((t,∞]).

(d) It follows from

(f + g)−1(t,∞] = {x ∈ X : f(x) + g(x) > t}

=
⋃
r∈Q

{x ∈ X : f(x) > r > t− g(x)}

=
⋃
r∈Q

(f−1((r,∞]) ∩ g−1((t− r,∞])).

(e) It suffices to check that for any real number t, we have{x ∈ X : − 1

f(x)
>

t} is open. Case 1 (t is non-negative).

{x ∈ X : − 1

f(x)
> t} = {x ∈ X : −1 > tf(x)} = φ.

Case 2 (t is negative).

{x ∈ X : − 1

f(x)
> t} = {x ∈ X : −1 > tf(x)} = {x ∈ X : −1

t
< f(x)}

is open by lower semi-continuity of f.

(2) Let X be a locally compact Hausdorff space. Let f ≥ 0 be l.s.c.. Show that

f = sup{g : g ∈ Cc(X), g ≥ 0, g ≤ f}.

(Hint: Use Urysohn’s lemma to construct, for 0 < a < f(x0), g(x0) = a,

g ∈ [0, a], etc.)
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Solution: If f(x0) = 0, then g(x) ≡ 0 satisfies condition. If f(x0) > 0, for

ε > 0, we need to find a l.s.c g, f ≥ g ≥ 0 and g(x0) ≥ f(x0)− ε. By l.s.c, ∃

open set G 3 x0 s.t.

f(x) > f(x0)− ε,∀x ∈ G.

Fix G1 3 x0, open, G1 is compact and G1 ⊂ G. Using Urysohn’s lemma, ∃ϕ,

0 ≤ ϕ ≤ 1, ϕ ≡ 1 on G1, sptϕ ⊂ G. Then g(x) = (f(x0) − ε)ϕ(x) satisfies

g(x) ≤ f(x),∀x ∈ G and

g(x0) = (f(x0)− ε)ϕ(x0) = f(x0)− ε ≤ f(x0).

(3) Let X be a compact topological space. Show that every l.s.c function from

X to R attains its minimum, that is, there exists some x ∈ X such that

f(x) ≤ f(y), ∀y ∈ X.

Solution: Let f : X → R l.s.c, X compact. First, we claim that ∃ m s.t.

f(x) ≥ m,∀x ∈ X.

Gn = {x : f(x) > n}, n ∈ Z is open. By compactness of X,

X =
∞⋃
n=1

Gn ⇒ X =
N⋃
n=1

Gn.

Therefore f(x) ≥ N. Second, let {xn}, f(xn)→ inf f ≡ m. Fj = {x : f(x) ≤

m+ 1/j} is non-empty closed set, so

∞⋂
j=1

Fj 6= φ
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and

∃x0 ∈
∞⋂
j=1

Fj, f(x0) ≤ m⇒ f(x0) = m.

(4) Show that every semicontinuous function is a Borel function.

Solution: Let f be a lower semicontinuous function. As every open set in

[−∞,∞] can be written as a countable union of (a, b), [∞, b), (a,∞] and

f takes value in (−∞,∞]. Therefore it suffices to show that f−1(a, b) and

f−1(a,∞] are Borel sets. By the proposition 2.14, the later set is an open set

and hence is a Borel set. X \ f−1(a,∞] = f−1(−∞, a] is closed and

f−1(−∞, a) =
∞⋃
n=1

f−1(−∞, a− 1/n]

is a Borel set. Therefore

f−1(a, b) = f−1(−∞, b) ∩ f−1(a,∞]

is a Borel set. We have the preimage of open set of f is Borel set, so f is

Borel function. the case for upper semicontinuos is similar.

(5) Let f : Rn → R be Lebesgue measurable. Show that there exist Borel

measurable functions g, h, g(x) ≤ f(x) ≤ h(x) for all x ∈ Rn such that

g(x) = h(x) a.e.

Solution: As Lebesgue measure on Rn is σ-finite and outer regular, we apply

Proposition 2.17 of Chapter 2 and obtain a Borel function g̃ and a null set N

s.t.

f(x) = g̃(x),∀x ∈ Rn \N.

By outer regularity of Lebesgue measure, ∃Gδ set W s.t W is Lebesgue mea-

sure zero and N ⊆ W . We define two Borel functions in the following way,
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g(x) =

 g̃(x), if x ∈ Rn \W,

−∞, if x ∈ W,

h(x) =

 g̃(x), if x ∈ Rn \W,

∞, if x ∈ W,

Obviously, g and h are Borel functions s.t

g(x) ≤ f(x) ≤ h(x),∀x ∈ Rn

and

g(x) = h(x) a.e..

(6) Let λ be a Borel measure and µ a Riesz measure on Rn such that λ(G) = µ(G)

for all open sets G. Show that λ coincides with µ on B.

Solution: Let E be a Borel set. ∀ε > 0,∃ closed set F ⊆ E and open set

G ⊇ E s.t

µ(G \ F ) < ε,

so

µ(G) ≤ µ(F ) + µ(G \ F ) < µ(E) + ε.

As G \ F is open, λ(G \ F ) = µ(G \ F ) < ε, so

λ(E) ≤ λ(G)

= µ(G)

< µ(E) + ε⇒ λ(E) ≤ µ(E).
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µ(E) ≤ µ(G) = λ(G) ≤ λ(F ) + λ(G \ F )

≤ λ(E) + ε⇒ µ(E) ≤ λ(E).

(7) A characterization of the Lebesgue measure based on translational invariance.

Let (Rn,B, µ) be a Borel measure space whose measure µ is translational in-

variant and is nontrivial in the sense that there exists some Borel set A such

that µ(A) ∈ (0,∞). Show that there exists a positive constant c such that

cµ is the restriction of the Lebesgue measure on B. Hint: First show that

µ(C) = µ(C) for every open cube C and then appeal to the problem above.

Solution:We first claim that µ(R) > 0 whenever R is a cube. By the as-

sumption, ∃A ∈ B s.t.µ(A) > 0. Moreover

A =
∞⋃
j=1

(A ∩Bj),

where Bj = Bj(0) ball.

µ(A) ≤
∞∑
j=1

µ(A ∩Bj)⇒ ∃A ∩Bj, µ(A ∩Bj) > 0.

Therefore we may assume that ∃ bound set A s.t. µ(A) > 0. By translational

invariance, we may cover A with finitely many copy of R, then we know that

µ(R) > 0. By a problem in Exercise 3 we know that every open G can be

written as

G =
⋃
j

Rj, Rj almost disjoint closed cubes .

Again by the translational invariance of µ, we have the face of cube R are of
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µ measure zero and

µ(R) = µ(R).

Hence ∀ open G,

µ(G) = Ln(G)

By Problem 6, we are done.

(8) Let K be compact in Rn and Kε = {x : dist(x,K) < ε} be open. Show that

Ln(Kε)→ Ln(K) as ε→ 0.

Solution: Since K is a bounded set due to compactness, Kε is also bounded

for any ε > 0. Observe that K = ∩kK1/k also due to compactness of K.

Since {K1/k}∞k=1 is a descending sequence of sets, one has

Ln(K) = Ln(
∞⋂
k=1

K1/k) = lim
k→∞
Ln(K1/k).

(9) Let A and B be non-empty measurable sets in Rn such that (1− λ)A + λB

is also measurable for all λ ∈ (0, 1). Show that Brunn-Minkowski inequality

is equivalent to either one of the following inequalities:

(a) Ln
(
(1− λ)A+ λB

)
≥ (1− λ)Ln(A) + λLn(B).

(b) Ln
(
(1− λ)A+ λB

)
≥ min

{
Ln(A),Ln(B)

}
.

Solution: By prop 3.2 of chapter 3, we know that for all Lebesgue measurable

set A and and real number c, cA is also Lebesgue measurable and

Ln(cA) = |c|nLn(A).
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Brunn-Minkowski inequality ⇒ a):

Ln
(
(1− λ)A+ λB

)1/n ≥ Ln((1− λ)A)1/n + Ln(λB)1/n

= (1− λ)Ln(A)1/n + λLn(B)1/n.

a) ⇒ b):

Ln
(
(1− λ)A+ λB

)1/n ≥ (1− λ)Ln(A)1/n + λLn(B)1/n

≥ (1− λ) min
{
Ln(A),Ln(B)

}
+ λmin

{
Ln(A),Ln(B)

}
= min

{
Ln(A),Ln(B)

}
.

b) ⇒ Brunn-Minkowski inequality: Now let A, B be measurable sets s.t.

A + B is also measureable. W.L.O.G., A and B are of finite measure. If A

or B is measure zero, we are done. We may suppose

Ln(A) and Ln(B) > 0.

Let J = Ln(A)1/n+Ln(B)1/n > 0, λ =
Ln(B)1/n

J
∈ (0, 1), by inner regularity

for sufficiently small ε, ∃K1 ⊆ A,K2 ⊆ B non empty compact sets s.t.

Ln(A \K1) < ε.

and

Ln(B \K2) < ε.
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Ln
(A+B

J

)
≥ Ln

(K1 +K2

J

)
= Ln

(
(1− λ)

K1

J(1− λ)
+ λ

K2

Jλ

)
≥ min

{
Ln
( K1

J(1− λ)

)
,Ln

(K2

Jλ

)}
≥ 1− ε

min
{
Ln(A),Ln(B)

} ,
and the result follows by taking ε→ 0.
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