
MATH5011 Real Analysis I

Exercise 1 Suggested Solution

Notations in the notes are used.

(1) Show that every open set in R can be written as a countable union of mutually

disjoint open intervals. Hint: First show that every point x in this open set

is contained in a largest open interval Ix. Next, for any x, y, Ix and Iy either

coincide and disjoint. Finally, argue there are at most countably many such

intervals.

Solution:

Let V be open in R. Fix x ∈ V , ∃ at least one open interval I, x ∈ I, I ⊆ V .

Let Iα = (aα, bα), α ∈ A, be all intervals with this property. Let

Ix = (ax, bx), ax = inf
α
aα, bx = sup

α
bα.

satisfy x ∈ Ix, Ix ⊆ V . It is obvious that Ix ∩ Iy 6= φ⇒ Ix = Iy. So

V =
⋃
x∈V

Ix.

As you can pick a rational number in each Ix and Q is countable,

V =
⋃
xj∈V

Ixj .

(2) Let Ψ : R×R→ R be continuous. Show that Ψ(f, g) are measurable for any

measurable functions f , g. This result contains Proposition 1.3 as a special

case.
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Solution:

Note that every open set G ⊆ R2 can be written as a countable union of set

of the form V1 × V2 where V1, V2 open in R. (Think of V1 × V2 = (a, b) ×

(c, d), a, b, c, d ∈ Q).

Let G ⊆ R be open. Then Φ−1(G) is open in R2, so

Φ−1(G) =
⋃
n

(V 1
n × V 2

n ),

Then

h−1(Φ−1)(G) =
⋃
n

h−1(V 1
n × V 2

n ) =
⋃
n

f−1(V 1
n ) ∩ g−1(V 2

n )

is measurable since f and g are measurable. Hence h = (f, g).

(3) Show that f : X → R is measurable if and only if f−1([a, b]) is measurable

for all a, b ∈ R.

Solution:

By def f : X → R is measurable if f−1(G) is measurable. ∀G open in R.

Every open set G in R can be written as acountable union of (a, b), [−∞, a),

(b,∞], a, b ∈ R. So ff is measurable iff f−1(a, b), f−1[−∞, a), f−1(b,∞] are

measurable.

⇒) Use

f−1(a, b) =
⋂
n

f−1(a− 1

n
, b+

1

n
)

f−1[−∞, a) =
⋂
n

f−1[−∞, a+
1

n
)

f−1(b,∞] =
⋂
n

f−1(b− 1

n
,∞]
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⇐) Use

f−1(a, b) =
⋃
n

f−1[a− 1

n
, b+

1

n
]

f−1[−∞, a) =
⋂
n

f−1[−∞, a− 1

n
]

f−1(b,∞] =
⋂
n

f−1[b+
1

n
,∞].

(4) Let f , g, fk, k ≥ 1, be measurable functions from X to R.

(a) Show that {x : f(x) < g(x)} and {x : f(x) = g(x)} are measurable sets.

(b) Show that {x : lim
k→∞

fk(x) exists and is finite} is measurable.

Solution:

(a) Suffice to show {x : F (x) > 0} and {x : F (x) = 0} are measurable. If

F is measurable, use

{x : F (x) > 0} = F−1(0,∞]

{x : F (x) = 0} = F−1[0,∞] ∩ F−1[−∞, 0]

(b) Since g(x) =lim sup
k→∞

fk(x) and lim inf
k→∞

fk(x) are measurable.

{x : lim
k→∞

fk(x) exists } = {x : lim inf
k→∞

fk(x) = lim sup
k→∞

fk(x)}

On the other hand, the set{x : g(x) < +∞} is also measurable, so is

their intersection.

(5) There are two conditions (i) and (ii) in the definition of a measure µ on

(X,M). Show that (i) can be replaced by the “nontriviality condition”:

There exists some E ∈M with µ(E) <∞.

Solution:
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If µ is a measure satisfying the nontriviality condition and (ii), let A1 = E,

Ai = φ for i ≥ 2 in ii),

∞ > µ(E) =
∞∑
i=1

µ(Ai) ≥ µ(A1) + µ(A2) = µ(E) + µ(φ)

so 0 ≥ µ(φ) ≥ 0. We have µ is a measure satisfying (i) and (ii).

if µ is a measure satisfying (i) and (ii), taking E = φ, we have the nontriviality

condition.

(6) Let {Ak} be measurable and
∞∑
k=1

µ(Ak) <∞ and

A = {x ∈ X : x ∈ Ak for infinitely many k}.

(a) Show that A is measurable.

(b) Show that µ(A) = 0.

This is Borel-Cantelli lemma, google for more.

Solution

(a) Note that

A =
∞⋂
n=1

⋃
k≥n

Ak.

This is clearly measurable.

(b) Since
∞∑
k=1

µ(Ak) <∞, we have
∞∑
k=n

µ(Ak)→ 0 as n→∞. For any n∈ N ,

we have

A ⊂
⋃
k≥n

Ak

and so

µ(A) ≤
∞∑
k=n

µ(Ak)
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.Taking n→∞, we have µ(A) = 0.

(7) Let T be a map from a measure space (X,M, µ) onto a set Y . Let N be

the set of all subsets N of Y satisfying T−1(N) ∈ M. Show that the triple

(Y,N , λ) where λ(N) = µ(T−1(N)) is a measure space.

Solution:

First, we show N is a σ-algebra in Y . This follows from the relations

T−1(Y ) = X,

T−1(Y \ A) = X \ T−1(A),

T−1(
∞⋃
n=1

An) =
∞⋃
n=1

T−1(An),

for any A,An ∈ N . Let {An}∞n=1 be a disjoint countable collection of N , then

{T−1(An)}∞n=1 is a disjoint countable collection of M, and

λ(
∞⋃
n=1

An) = µ(T−1(
∞⋃
n=1

An)) = µ(
∞⋃
n=1

T−1(An)) =
∞∑
n=1

µ(T−1(An)) =
∞∑
n=1

λ(An).

This proves the countably additivity of λ, and hence the triple (Y,N , λ) where

λ(N) = µ(T−1(N)) is a measure space.

(8) In Theorem 1.6 we approximate a non-negative measurable function f by

an increasing sequence of simple functions from below. Can we approximate

f by a decreasing sequence of simple functions from above? A necessary

condition is that f must be bounded in X, that is, f(x) ≤ M, ∀x ∈ X for

some M . Under this condition, show that this is possible.

Solution:

f(X) ⊆ [0,M ], we can divide [0,M ] into subintervals

Ikj =
[jM

2k
,
(j + 1)M

2k
)
,
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for j=0,1,2....2k − 2

Ik2k−1 =
[(2k − 1)M

2k
,M
]
,

define ϕk(t) =
(j + 1)M

2k
if t ∈ Ij. As Ik+1

2j ∪ Ik+1
2j+1 ⊆ Ikj , ϕk(t) is a decreas-

ing sequence(so is ϕk(f(x))) and ϕk(f(x)) is simple function satisfying the

following inequality :

ϕk(f(x)) ≥ f(x) ≥ ϕk(f(x))− M

2k
.

Hence ϕk(f(x)) is a deceasing sequence of simple functions which converges

uniformly to f over X.

(9) A measure space is complete if every subset of a null set, that is, a set of

measure zero, is measurable. This problem shows that every measure space

can be extended to become a complete measure. It will be used later.

Let (X,M, µ) be a measure space. Let M̃ contain all sets E such that there

exist A,B ∈ M, A ⊂ E ⊂ B, µ(B\A) = 0. Show that M̃ is a σ-algebra

containing M and if we set µ̃(E) = µ(A), then (X,M̃, µ̃) is a complete

measure space.

Solution:

We see that M̃ contains M by taking E = A = B for any E ∈M. Suppose

Ei ∈ M̃, Bi ⊆ Ei ⊆ Ai where Bi, Ai ∈M and µ(Ai\Bi) = 0, then

∞⋂
i=1

Bi ⊆
∞⋂
i=1

Ei ⊆
∞⋂
i=1

Ai

and

µ(
∞⋂
i=1

Ai\
∞⋂
i=1

Bi) ≤ µ(
∞⋃
i=1

Ai\Bi) ≤
∞∑
i=1

µ(Ai\Bi) = 0.
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We have
∞⋂
i=1

Ei is in M̃. If A ⊇ E ⊇ B, then

X\A ⊆ X\E ⊆ X\B

and

µ((X\B)\(X\A)) = µ(A\B).

Hence X\E is in M̃ and M̃ is a σ algebra. We check that µ̃ is a measure

on M̃ . Obviously µ̃(φ) = 0. Let Ei be mutually disjoint µ̃ measurable set,

∃Bi, Ai µ measurable s.t

Ai ⊆ Ei ⊆ Bi

and

µ(Bi \ Ai) = 0.

Using above argument, we have µ(
∞⋃
i=1

Bi \
∞⋃
i=1

Ai) = 0, And Ai are mutually

disjoint,

µ̃(
∞⋃
i=1

Ei) = µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai) =
∞∑
i=1

µ̃(Ei).

So µ̃ is a measure on M̃ .

Finally, we check that µ̃ is a complete measure, let E be a µ̃ measurable and

null set, for all subset C ⊆ E, we have ∃A,B ∈ M s.t.A ⊆ E ⊆ B and

µ(A) = µ(B) = 0. Therefore

φ ⊆ C ⊆ B

and

µ(B) = 0.
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We have C ∈ M̃.

(10) Here we review Riemann integral. Let f be a bounded function defined on

[a, b], a, b ∈ R. Given any partition P =
{
a = x0 < x1 < · · · < xn = b

}
on

[a, b] and tags zj ∈ [xj, xj+1], there corresponds a Riemann sum of f given

by R(f, P, z) =
∑n−1

j=0 f(zj)(xj+1 − xj). The function f is called Riemann

integrable with integral L if for every ε > 0 there exists some δ such that

∣∣R(f, P, z)− L
∣∣ < ε,

whenever ‖P‖ < δ and z is any tag on P . (Here ‖P‖ = maxn−1j=0 |xj+1− xj| is

the length of the partition.) Show that

(a) For any partition P , define its Darboux upper and lower sums by

R(f, P ) =
∑
j

sup
{
f(x) : x ∈ [xj, xj+1]

}
(xj+1 − xj),

and

R(f, P ) =
∑
j

inf
{
f(x) : x ∈ [xj, xj+1]

}
(xj+1 − xj)

respectively. Show that for any sequence of partitions {Pn} satisfying

‖Pn‖ → 0 as n→∞, limn→∞R(f, Pn) and limn→∞R(f, Pn) exist.

(b) {Pn} as above. Show that f is Riemann integrable if and only if

lim
n→∞

R(f, Pn) = lim
n→∞

R(f, Pn) = L.

(c) A set E in [a, b] is called of measure zero if for every ε > 0, there exists

a countable subintervals Jn satisfying
∑

n |Jn| < ε such that E ⊂
⋃
n Jn.

Prove Lebsegue’s theorem which asserts that f is Riemann integrable if

and only if the set consisting of all discontinuity points of f is a set of
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measure zero. Google for help if necessary.

Solution:

(a) It suffices to show: For every ε > 0, there exists some δ such that

0 ≤ R(f, P )−R(f) < ε,

and

0 ≤ R(f)−R(f, P ) < ε,

for any partition P, ‖P‖ < δ, where

R(f) = inf
P
R(f, P ),

and

R(f) = sup
P
R(f, P ).

.

If it is true, then limn→∞R(f, Pn) and limn→∞R(f, Pn) exist and equal

to R(f) and R(f) respectively.

Given ε > 0, there exists a partition Q such that

R(f) + ε/2 > R(f,Q).

Let m be the number of partition points of Q (excluding the endpoints).

Consider any partition P and let R be the partition by putting together

P and Q. Note that the number of subintervals in P which contain

some partition points of Q in its interior must be less than or equal to

m. Denote the indices of the collection of these subintervals in P by J .
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We have

0 ≤ R(f, P )−R(f,R) ≤
∑
j∈J

2M∆xj ≤ 2M ×m||P ||,

where M = sup[a,b] |f |, because the contributions of R(f, P ) and R(f,Q)

from the subintervals not in J cancel out. Hence, by the fact that R is

a refinement of Q,

R(f) + ε/2 > R(f,Q) ≥ R(f,R) ≥ R(f, P )− 2Mm||P ||,

i.e.,

0 ≤ R(f, P )−R(f) < ε/2 + 2Mm||P ||.

Now, we choose

δ <
ε

1 + 4Mm
,

Then for P, ‖P‖ < δ,

0 ≤ R(f, P )−R(f) < ε.

Similarly, one can prove the second inequality.

(b) With the result in part a, it suffices to prove the following result: Let f

be bounded on [a, b]. Then f is Riemann integrable on [a, b] if and only

if R(f) = R(f). When this holds, L = R(f) = R(f).

According to the definition of integrability, when f is integrable, there

exists some L ∈ R so that for any given ε > 0, there is a δ > 0 such

that for all partitions P with ||P || < δ,

|R(f, P, z)− L| < ε/2,

holds for any tags z. Let (P1, z1) be another tagged partition. By the
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triangle inequality we have

|R(f, P, z)−R(f, P1, z1)| ≤ |R(f, P, z)−L|+|R(f, P1, z1)−L| < ε/2+ε/2 = ε.

Since the tags are arbitrary, it implies

R(f, P )−R(f, P ) ≤ ε.

As a result,

0 ≤ R(f)−R(f) ≤ R(f, P )−R(f, P ) ≤ ε.

Note that the first inequality comes from the definition of the upper/lower

Riemann integrals. Since ε > 0 is arbitrary, R(f) = R(f).

Conversely, using R(f) = R(f) in part a, we know that for ε > 0, there

exists a δ such that

0 ≤ R(f, P )−R(f, P ) < ε,

for all partitions P, ‖P‖ < δ. We have

R(f, P, z)−R(f) ≤ R(f, P )−R(f)

≤ R(f, P )−R(f, P )

< ε,

and similarly,

R(f)−R(f, P, z) ≤ R(f, P )−R(f, P ) < ε.
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As R(f) = R(f), combining these two inequalities yields

|R(f, P, z)−R(f)| < ε,

for all P, ‖P‖ < δ, so f is integrable, where L = R(f).

(c) For any bounded f on [a, b] and x ∈ [a, b], its oscillation at x is defined

by

ω(f, x) = inf
δ
{(sup f(y)− inf f(y)) : y ∈ (x− δ, x+ δ) ∩ [a, b]}

= lim
δ→0+
{(sup f(y)− inf f(y)) : y ∈ (x− δ, x+ δ) ∩ [a, b]}.

It is clear that ω(f, x) = 0 if and only if f is continuous at x. The set of

discontinuity of f , D, can be written as D =
⋃∞
k=1O(k), where O(k) =

{x ∈ [a, b] : ω(f, x) ≥ 1/k}. Suppose that f is Riemann integrable on

[a, b]. It suffices to show that each O(k) is of measure zero. Given ε > 0,

by Integrability of f , we can find a partition P such that

R(f, P )−R(f, P ) < ε/2k.

Let J be the index set of those subintervals of P which contains some

elements of O(k) in their interiors. Then

1

k

∑
j∈J

|Ij| ≤
∑
j∈J

(sup
Ij

f − inf
Ij
f)∆xj

≤
n∑
j=1

(sup
Ij

f − inf
Ij
f)∆xj

= R(f, P )−R(f, P )

< ε/2k.
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Therefore ∑
j∈J

|Ij| < ε/2.

Now, the only possibility that an element of O(k) is not contained by

one of these Ij is it being a partition point. Since there are finitely

many partition points, say N , we can find some open intervals I ′1, ..., I
′
N

containing these partition points which satisfy

∑
|I ′i| < ε/2.

So {Ij} and {I ′i} together form a covering of O(k) and its total length

is strictly less than ε. We conclude that O(k) is of measure zero.

Conversely, given ε > 0, fix a large k such that 1
k
< ε. Now the set

O(k) is of measure zero, we can find a sequence of open intervals {Ij}

satisfying

O(k) ⊆
∞⋃
j=1

Ij,

∞∑
j=1

|Iij | < ε.

One can show that O(k) is closed and bounded, hence it is compact. As

a result, we can find Ii1 , ..., IiN from {Ij} so that

O(k) ⊆ Ii1 ∪ ... ∪ IiN ,

N∑
j=1

|Ij| < ε.

Without loss of generality we may assume that these open intervals are

mutually disjoint since, whenever two intervals have nonempty intersec-

tion, we can put them together to form a larger open interval. Observe

that [a, b] \ (Ii1 ∪ · · · ∪ IiN ) is a finite disjoint union of closed bounded
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intervals, call them V ′i s, i ∈ A. We will show that for each i ∈ A, one

can find a partition on each Vi = [vi−1, vi] such that the oscillation of f

on each subinterval in this partition is less than 1/k.

Fix i ∈ A. For each x ∈ Vi, we have

ω(f, x) <
1

k
.

By the definition of ω(f, x), one can find some δx > 0 such that

sup{f(y) : y ∈ B(x, δx) ∩ [a, b]} − inf{f(z) : z ∈ B(x, δx) ∩ [a, b]} < 1

k
,

where B(y, β) = (y−β, y+β). Note that Vi ⊆
⋃
x∈Vi B(x, δx). Since Vi is

closed and bounded, it is compact. Hence, there exist xl1 , . . . , xlM ∈ Vi
such that Vi ⊆

⋃M
j=1B(xij , δxlj ). By replacing the left end point of

B(xij , δxlj ) with vi−1 if xlj−δxlj < vi−1, and replacing the right end point

of B(xij , δxlj ) with vi if xlj + δxlj > vi, one can list out the endpoints

of {B(xlj , δlj)}Mj=1 and use them to form a partition Si of Vi. It can be

easily seen that each subinterval in Si is covered by some B(xlj , δxlj ),

which implies that the oscillation of f in each subinterval is less than

1/k. So, Si is the partition that we want.

The partitions Si’s and the endpoints of Ii1 , ..., IiN form a partition P

of [a, b]. We have

R(f, P )−R(f, P ) =
∑
Iij

(Mj −mj)∆xj +
∑

(Mj −mj)∆xj

≤ 2M
N∑
j=1

|Iij |+
1

k

∑
∆xj

≤ 2Mε+ ε(b− a)

= [2M + (b− a)]ε,
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where M = sup[a,b] |f | and the second summation is over all subintervals

in Vi, i ∈ A. Hence f is integrable on [a, b].
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