MATH 1510 Chapter 8

8.1 Power Series

Roughly speaking, a power series is a polynomial with degree oco.

Definition 8.1 (Power series). A power series is a function of the form

[e.o]

fl@)=) ez —a)f

k=0
=co+ei(r—a)+c(r—a)’+c(r—a)4+---

where a, ¢y, ¢1, co, . .., are real numbers. We call a the center of the series.
. Ck
R = lim |——
k—oo | Ck1

is called the radius of convergence of the series (if exists or is co ).

For convenience, we allow R = oo. The implied domain of a power series is
the set of = such that it converges.

Example 8.2. Consider the power series
fla)y=> a"=1+a+2’+a>+ -
k=0

Clearly, a = 0, ¢, = 1 and so,

R=lm|—|=1 = R=1.
Since
1 1 1\> /1\° o
f 5= 1+ 5 + B + 5 + - - - converges(geometric series)
f(2)=1+2+2%+2%+ ... diverges,

1
we know that 5 € Dybut2 ¢ Dy.



Proposition 8.3 (Interval of convergence). The implied domain of any power se-
ries f(x) with center a and radius of convergence R is an interval of the form:

(a—R,a+ R),(a—R,a+ R],[a— R,a+ R)or[a— R,a+ R].

Proof of Interval of convergence. Let us handle the case when R # 0,00. The
cases when R = 0 and R = oo follow from similar arguments. Suppose |z —a| <

R. Then, for the series f(z) = Z cr(x — a)F,
k=0

k+1 -
e

cer1(z —a
ck(x —a)k

Therefore, by ratio test, the series converges.On the other hand, if |z — a| > R,
then

= lim
k—o0

k-th term

k—o00

" ‘ (k + 1)-th term‘

e R e e
Again, by ratio test, the series diverges.Hence,
(a—R,a+R)C Dy Cla—R,a+R|
and the result follows. 0

Thus, we call the implied domain of a power series its interval of conver-
gence.

Example 8.4. As in Example Example 8.2,
fla)y=> a"=1+a+2’+a"+---
k=0

Since its center and radius of convergence are 0, 1 respectively, we can conclude
that the interval of convergence of f(z) is either

(-1,1),(-1,1],[-1,1) or [-1,1].
That means f(z) converges whenever = € (—1,1). In fact, for any z € (—1,1),

1
1—z

F) =3 ek =14 ot s ot
k=0

Example 8.5. For the following power series, find its center and radius of conver-
gence. For what = does the series converge?
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k=0
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Mg

k=0

8.2 Taylor Series

While a calculator can only perform basic arithmetic: +, —, X, <+, how does it
compute something like sin 1 or e™ ? The answer is Taylor series .

Definition 8.6 (Taylor series). We say that a function f(z) is smooth (or infinitely
differentiable) over an interval I if ) (z) is differentiable over I for any n > 0.
The Taylor series of a smooth function f(x) at a point x = a is:

ZOO ®)(q
T(l’) = — Ck(x_a)k Where Cr = f k|( )
' f"(a . f9@ \
= f@) + P - a) + T @ a1 LDy

The Maclaurin series of f(x) is its Taylor series with center a = 0 :

" (3)
ka' o= g0+ 0w+ L L0

The Taylor polynomial of order n of f(x) at a point x = a is:

f"(a)

2' (l‘_a)2_’_...+

") (g
=S 0 = )+ fa)a - )+

(Expanded up to order n ) The Maclaurin polynomial of order n of f(z) is its
Taylor polynomial of order n with center a = 0 :

—~ fM(0) 4 f"(0) ()

Tn(x):kz e :f(O)—i-f/(O)I—i-Tx AR e
—0

Remark. Observe that the Taylor polynomial T,(x) of f(x) at z = a is the unique
polynomial which satisfies the condition:

TW™(a) = fP(a), 0<k<n.
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Example 8.7. Consider the function f(z) = e*. It’s clearly smooth over R. More-
over,

F™(z) =" = f™(0)=1and f™(1) =e.

Therefore,

1
=1+ r+ a2+

Maclaurin series of f(x) = ' o

Mg
Wlp—k

x~
Il
<)

™

Taylor series of f(z) about x = 1 is Z k_ xr —

By definition, the Maclaurin polynomials of f(x) of orders 0, 1,2 are

1
Ll4+x, 142+ §x2respectively.

y=[flz)=¢

(0, £(0)) y=Ty(x) =1

From Example Example 8.7, we can see that Taylor polynomial of order n can
be regarded as a degree n polynomial approximation of f around the center a. In
particular,

Ti(z) = f(a) + f'(a)(z — a)
is the linearization of f at a.
* Taylor polynomials of f(x) = sinz centered at a = 0.
e Taylor polynomials of f(z) = sin z centered at a = /2.

The following are some basic Taylor series:

1) —e+e(x—1)+%(w—1)2+---.
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Proposition 8.8.

i S S WP S U PR
- — T+ —x? 4+ —a®
o e 2! 3!
converges for all x € R
- 1 1 1 1
o 1\k 2k+1l _ oo o3 5 T
sing =3 _(~1) C S T T T TR
k=0
converges for all v € R
- 1 1 1 1
. _1\k 2k 1 _ — 24 — 4
cosx—Z( 1) —(Qk)!x =1 1% +4!x 6'$ + -
k=0

converges for all x € R

Zm = l+z+22+2°+-

converges forall v € (—1,1)

. 1 1 1
n(l+z) Z k“ i —x—2x2+§x3—1x4+~--
k=1

converges for all v € (—1,1]

Remark. In general, a function and its Taylor series are not necessarily equal to
each other as functions.

For instance, the domain of the Maclaurin series of is (—1, 1), while the

— X

domain of 1 is (—oo0, 1) U (1, 00).

— X

8.3 Operations on Taylor Series

It is known that if a power series Y -, cx(x — a)* converges to a given function
f(z) on an open interval centered at x = a, then that power series is the Taylor
series of f(x) atx = a:

f¥(a)
TR




This implies in particular that the power series centered at * = a converging to
the function f(z) on an open interval is unique : There cannot be another power
series with the same center which also converges to the same function on an open
interval.

This fact offers a "shortcut" to find the Taylor series of various functions based
on known Taylor series.

Suppose

f(z) =sinz, andg(x)= cosz.

(For the following Taylor series, the centers are assumed to be a = 0.)

Taylor series of (f(x) + g(z)) = Taylor series of f(x) + Taylor series of g(x)

(Notice that this coincides with the Taylor series of g(z) = cos x.)

Taylor series of / f(t) dt = Integrating Taylor series of f(¢) term by term
0



(Notice that this coincides with the Taylor series of 1 — cos x.)

To find the

Taylor series of

Then,

Taylor seri

f()

Taylor series of “—— where g(a) # 0, we start by letting:

g9(z)
f(x)

= o+ a1z + 1?4 c32° + gzt + -+
9(z)

esof f(z) = (Taylor series of %) - (Taylor series of g(x))

x— -t

6

1 1
:(co+clx+c2x2+03x3+04x4+---)(1——:c2+—:c4+~~)

2 24

Hence, by comparing the coefficients, we have

29 term:
! term:

22 term:

23 term:

ztterm: 0

0 = 1) — ¢y =0
1 = c(0) + (1) — =1
0 = o <—%)+c1(o)+02(1) SN
= a0t (—%)—FCQ(O)—i—Cg(l) — =3
. (i) +en(0) + ¢ (—%) +e5(0) + es(1)
= ¢4 =0

and we can conclude that:

Example 8.9.

flo) _ o ls,
o) TR0

* Find the Maclaurin series of f(z) = sin” z.

Taylor series of

* Hence, find 19 (0) and f1(0).

Example 8.10
Example 8.11

Example 8.12
Example 8.13

Example 8.14

. Find the Maclaurin series of f(z) = /1 + 22
. Find the Maclaurin series of f(z) = %
—x

. Find the Maclaurin series of f(z) = arctan z.

. Find the Taylor series of f(z) = % with center @ = 1.
T

. Find the Maclaurin polynomial of order 3 of f(z) = e“**.
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8.4 Lagrange Form of Remainder

Although Taylor series is powerful, no machine can really perform an infinite sum.
So in practice, a calculator computes a finite sum with acceptable error instead.
That means we need to control the error.

Theorem 8.15 (Taylors Theorem). Suppose f(x) is (n + 1) -times differentiable
over the interval |a, x] (or [z, a] ). Then,

f(x) = T (z) + Ra()
where
f"9(e)
R,.(v) = "——
(@) (n+1)!
for some ¢ € (a,z) (or (v,a) ). R,(x) is called the Lagrange form of remainder

Remark. Be careful: R, (z) looks similar to the (z — a)"™! term of the Taylor
series, but is not the same.

(x —a)™*!

Proof of Taylor’s Theorem. Let:

" (n)
Ft)=ft)+ f'(t)(x —1t)+ ) (x—t)> 4+ -+ ) (x —t)"

21 n!

" (n)
o =5 (104 roe-0+ Dl ga s e o)
= S0+ (10— 1)~ )+ (O~ 0P~ 20" @)~ 1)
bk (@) - 0 = nf () - )

= @) — 1)

Therefore, by Theorem 5.9 (Cauchy’s Mean Value Theorem), there exists ¢ €
(a,z) (or (z,a) ) such that

F'(c) _ F(z) — F(a)
G'(c) G(x)—G(a)
1 s n
mf(n '(e)(z —¢) f(x) =T, (x)
(n+c—a)"  —(a—a)"H
FeHD(¢) n ntl _ _
m(—1) (—D)(a—x)" = f(z) — Th(x)
Hence, f(z) = T, (x) + R,(x) as desired. D
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Alternatively,

Proof of Taylor’s Theorem. Recall that Ték)(a) = f®(a) fork =0,1,2,...,n.
Moreover, observe that 7 =0 for k > n, since 1,, is a polynomial of degree at
most n.
Let:
F(z) = f(z) = Tu(z), G(x)=(x—a)""".
Then, F'(a) = G(a) = 0, and by Theorem 5.9 (Cauchy’s Mean Value Theorem),
we have:

flz) = T(z) F(z)— F(a)
(x—a)"  G(x) —G(a)
_ F'(@)
G'(z1)

for some z; between a and x.
Now let:

Fi(z) = F'(z) = f'(x) = T,(x),
Gi(x) =G () = (n+1)(x —a)™
Repeating the same procedure carried out before, we have:
(o) = To(wn) _ Fi(x) _ [P (w2) = T (z2)
(n+ Dz —a)r  Gix)  (n+ Vnzy —a)yn!
for some x5 between a and 1. Repeating this process n + 1 times, we have:

f@) =Ta(z) _ f(21) =T (2)
(x—a)"tt (4 1)(z1 —a)"
_ SO ) - T ()
(n+ 1)n(zy — a)™ !

_ M) = T ()
(n+Dnn—1)---2(z, — a)
_ f(n+1)<xn+1) -0

B (n+1)!

for some x,, 1 between a and z. Letting ¢ = x,,11, the theorem follows. [
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Remark. If we apply the Taylor’s Theorem with n = 0, we have

f(x) = To(x) + Ro(z) = f(a) + f(c)(x — a)

Thus, Taylor’s Theorem can be regarded as a generalization of Lagrange’s MVT.

Example 8.16. For any x > 0,

x 1 ]_ €C
€ =T3(x)+R3(I):1+x+5x2+§x3+gx4
for some ¢ € (0, x). In particular, when = 1,

SIS N
° 276 24
with ¢ = 0.214114 € (0, 1).
Example 8.17. To approximate the value of sin 1, we apply Taylor’s Theorem on
sinx :

1 4 cosc g

sine = Ty(x) + Ry(x) = x — Tk + Y
where ¢ € (0, x). By putting x = 1, we have:
5) 1 < sinl 5) n cosc _ 5) n 1
- —— <sginl = - -+ —
6 120 — 6 120 — 6 120

0.825 < sin1 < 0.8416667
(In fact, sin1 ~ 0.841471)

Example 8.18. Let’s try to approximate

1
/ cos(x?) dx
0

with an error < 0.001. First of all, we apply Taylor’s Theorem on cost :

cost = T,(t) + R,(t), wheren = 2m is even,

1 1 (=)™ sinc
-1 —t2 . —1)™ t2m 2m+1
ot T UG @m 1 1)
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for some ¢ € (0,¢). By putting ¢t = x2, we have

1
Exact value = / cos(x?) dx
0

1 .
sin ¢
-1 m+1 4m+-2 d
* /0 A s DT
= Approximation + Error

So, we can see that:

1 .
S1n C
-1 m+1 4m+2d
/0 (=1) Cm+ 1) x
1

(2m + 1)!(4m + 3)’

1
1
< 4m+2d
—/0 Cm+ )" v

|Error| =

which would be < 0.001 when m = 2. Hence, with m = 2,

1
1 1

Approximation = / (1 — 5:174 + 51’8) dz ~ 0.9046296.
O . .

1
(In fact, / cos(2?) dr ~ 0.9045242.)
0

Example 8.19. Find the exact value of

1 1 1 1
oAy n T
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