
MATH 1510 Chapter 4

4.1 First principle
Consider the graph of the function f(x) = x2 What is the slope of the tangent at
the point (1, 1)?

A good starting point would be to approximate it by secant lines:

Secant line with Slope

(2, f(2))
f(2)− f(1)

2− 1
= 3

(1.5, f(1.5))
f(1.5)− f(1)

1.5− 1
= 2.5

(1.1, f(1.1))
f(1.1)− f(1)

1.1− 1
= 2.1

(0.9, f(0.9))
f(0.9)− f(1)

0.9− 1
= 1.9

Secant Lines

Hence, slope of the tangent of y = f(x) at (1, f(1)) should be:

lim
h→0

f(1 + h)− f(1)
h

= lim
h→0

(1 + h)2 − 1

h
= 2
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(The secant lines in Figure 4.1 correspond to h with values 1, 0.5, 0.1, −0.1.)

Definition 4.1. The derivative of a function f(x) at a point x = a is

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

= lim
x→a

f(x)− f(a)
x− a

Open in browser

Example 4.2. Find f ′(a) if f(x) = x2.

4.2 Differentiability
We say that a function f(x) is differentiable at a point x = a if the limit

lim
h→0

f(a+ h)− f(a)
h

exists. If so, such limit is denoted by f ′(a) or
dy

dx

∣∣∣∣
a

.

Like limit, we also have one-sided derivatives:

Definition 4.3. • Left hand derivative

Lf ′(a) = lim
h→0−

f(a+ h)− f(a)
h

• Right hand derivative

Rf ′(a) = lim
h→0+

f(a+ h)− f(a)
h

Geometrically, they may be viewed as the slopes of the tangents on the left
and right, respectively:
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Proposition 4.4. A function f is differentiable at a if and only if Lf ′(a), Rf ′(a)
both exist and are equal.

If so, then:

f ′(a) = Lf ′(a) = Rf ′(a) = slope of the tangent at a.

Proof of Proposition 4.4. By definitions and the corresponding properties of one-
sided limits.

Definition 4.5. • We say that f(x) is differentiable on (a, b) if f(x) is differ-
entiable at c for any c ∈ (a, b).

• We say that f(x) is differentiable on [a, b) if f(x) is differentiable on (a, b)
and at a, in the sense that Rf ′(a) exists.

• We say that f(x) is differentiable on (a, b] if f(x) is differentiable on (a, b)
and at b, in the sense that Lf ′(b) exists.

• We say that f(x) is differentiable on [a, b] if f(x) is differentiable on (a, b)
and at both a, b.

Example 4.6. For the function:

f(x) = |x|,

we have:

Lf ′(0) = lim
h→0−

f(0 + h)− f(0)
h

= lim
h→0−

−h
h

= −1

Rf ′(0) = lim
h→0+

f(0 + h)− f(0)
h

= lim
h→0−

h

h
= 1

Therefore, the function is not differentiable at 0.
(One can show that f(x) is differentiable on (−∞, 0) ∪ (0,+∞).)

Example 4.7. Is the function:

f(x) =

{
x3 if x < 0

x2 if x ≥ 0

differentiable at 0?

It’s tempting to say that Rf ′(0) = 0 for the function f(x) = x2 because
f ′(x) = 2x. But in general we cannot assume that:

L′f(a) 6= lim
x→a−

f ′(x) or R′f(a) 6= lim
x→a+

f ′(x).
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Consider the function:

f(x) =

{
x2 sin

(
1
x

)
if x 6= 0

0 if x = 0

Then, Rf ′(0) = 0, but limx→0+ f
′(x) DNE.

Differentiability is stronger than continuity:

Theorem 4.8. If a function f is differentiable at a, and it is continuous at a.

(The converse does not hold in general: f(x) = |x| is continuous at 0, but not
differentiable at 0)

Proof of Theorem 4.8. Since g(x) = x− a is continuous over R,

lim
x→a

(f(x)− f(a))= lim
x→a

f(x)− f(a)
x− a

(x− a)

= f ′(a)g(a)

= 0

=⇒ lim
x→a

f(x)= f(a).

4.3 Derivative function and basic rules
By considering the slopes of the tangents at different points (assuming differen-
tiability), we can consider the derivative of a function f(x) as a function:

f ′ : x 7→ f ′(x) = lim
h→0

f(x+ h)− f(x)
h

The domain of f ′ consists of those elements in the domain of f where f is differ-
entiable.

We call f ′(x) the derivative of f(x). It is also denoted by:

dy

dx
,

d

dx
f(x), Dxf(x)

Example 4.9. Find f ′(x) if f(x) = sin x.

Proposition 4.10. • If f , g are differentiable at a, then: f ± g, f · g and
f

g
(if

g(a) 6= 0) are all differentiable at a.
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• If f is differentiable at a and g is differentiable at f(a), then g ◦ f is differ-
entiable at a

(Some elementary functions are not differentiable at some points in their do-
mains, e.g., the domain of x

1
3 is R, but it’s not differentiable at 0.)

Theorem 4.11. For any differentiable functions f, g and constants a, b ∈ R,

• (Linearity):

(af(x) + bg(x))′ = af ′(x) + bg′(x)

• Product Rule:

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)

• Quotient Rule: (
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g(x)2

if g(x) 6= 0.

• Chain Rule:

d

dx
(g ◦ f)(x) = g′(f(x)) · f ′(x)

Proof of Theorem 4.11. See Proposition 3 in Appendix 2.

Theorem 4.12. Suppose f−1 exists for a function f around a point a, f(a) = b
and f, f−1 are differentiable at a, b respectively. Then

(f−1)′(b) =
1

f ′(a)
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Proof of Theorem 4.12. See Theorem 8 in Appendix 2.

By the above rules, we can differentiate any complicated functions as long as
we know the derivatives of the elementary functions.

4.4 Derivatives of elementary functions
Theorem 4.13 (Power Rule). For any constant a ∈ R,

d

dx
(a) = 0,

d

dx
(x) = 1,

d

dx
(xa) = axa−1

Proof of Power Rule. If a is a positive integer, then:

d

dx
xa = lim

h→0

(x+ h)a − xa

h
(Let t = x+ h)

= lim
t→x

ta − xa

t− x

= lim
t→x

(t− x)(ta−1 + ta−2x+ · · ·+ txa−2 + xa−1)

t− x
= lim

t→x
(ta−1 + ta−2x+ · · ·+ txa−2 + xa−1)

= axa−1

If a is a negative integer, then xa =
1

x−a
, and the theorem follows from an appli-

cation of the qoutient rule.
If a is any real number, then for x > 0 we have:

xa = ea lnx.
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Hence:

d

dx
(xa) =

d

dx
(ea lnx)

= ea lnx · a
x

(by the Chain Rule)

= xa · a
x

= axa−1

(For derivatives of ex, lnx, see Propositions 4, 5 in Appendix 3)

Example 4.14. Find the derivative of:

•

f(x) = 3
√
x+

1

x

•

f(x) =
x2 + 1

x+ 1

•

f(x) =
√
x2 − 1

Theorem 4.15 (Derivatives of Trigonometric Functions).

d

dx
(sinx) = cos x

d

dx
(cosx) = − sinx

d

dx
(tanx) = sec2 x

d

dx
(secx) = secx tanx

d

dx
(cscx) = − cscx cotx

d

dx
(cotx) = − csc2 x

Proof of Derivatives of Trigonometric Functions. (Sketch) The fact that:

d

dx
(sinx) = cos x

was handled in Example Example 4.9 . The derivative of cosx can be found by
considering

cosx = sin
(π
2
− x
)

The other four formulas can then be easily derived.
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Theorem 4.16 (Derivatives of Inverse Trigonometric Functions).

d

dx
(arcsinx) =

1√
1− x2

d

dx
(arccosx) = − 1√

1− x2
d

dx
(arctanx) =

1

1 + x2

d

dx
(arcsecx) =

1

x
√
x2 − 1

d

dx
(arccscx) = − 1

x
√
x2 − 1

d

dx
(arccotx) = − 1

1 + x2

Proof of Derivatives of Inverse Trigonometric Functions.

y = arcsinx

sin y = x

cos y =
dx

dy
dy

dx
=

1

cos y
=

1√
1− x2

Other formulas can be proved similarly.

Theorem 4.17 (Derivatives of Exponential and Logarithmic Functions).

d

dx
(ex) = ex

d

dx
(ax) = (ln a)ax

d

dx
(lnx) =

1

x
d

dx
(loga x) =

1

(ln a)x

Proof of Derivatives of Exponential and Logarithmic Functions. (Sketch) For deriva-
tives of ex, lnx, see Propositions 4, 5 in Appendix 3. The derivatives of ax and
loga x can be derived easily from the facts that

ax = ex ln aand loga x =
lnx

ln a

Example 4.18. Find the derivative of:

•

f(x) = sec x tanx

•

f(x) = arcsin(cos x)
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•

f(x) = log2(e
x + sinx)

•

f(x) =


lnx if x ≥ 1

cos
(
πx
2

)
if 0 < x < 1

1− x2 if x ≤ 0

4.5 Implicit differentiation
Consider the equation

x2 + y2 = 2.

How to find the slope of the tangent at the point (1, 1)?
Method 1

y =
√
2− x2 (upper half)

y′ = −x(2− x2)−
1
2

y′(1) = −1

So, the slope of the tangent is −1.
What if we can’t solve for y?
Method 2
Consider y as a (differentiable) function of x : y = y(x)

x2 + y(x)2 = 2

d

dx
(x2 + y(x)2) =

d

dx
(2)

2x+ 2y(x)
d

dx
y(x) = 0 (by the Chain rule)

2x+ 2y(x)y′(x) = 0

Therefore, y′ = −x
y

and

y′(1) = −1

1
= −1

This is what we called implicit differentiation.
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Example 4.19. • Express y′ in terms of x, y if:

y3 + 7y = x3

• Find
dy

dx

∣∣∣∣
(0,1)

if:

y sinx = ln y + x

4.6 Logarithmic differentiation
There is a trick called logarithmic differentiation that can sometimes simplify the
process of differentiation.

Example 4.20. Find the derivative of

y = e5x sin 2x cosx

Let’s take "ln" on both sides and use the properties of logarithm to simplify the
expression:

ln y = 5x+ ln(sin 2x) + ln(cos x)

Then we differentiate both sides with respect to x :

d

dx
(ln y) =

d

dx
(5x+ ln(sin 2x) + ln(cos x))

1

y
y′ = 5 +

2 cos 2x

sin 2x
+
− sinx

cosx

Hence,

y′ = y(5 + 2 cot 2x− tanx) = e5x sin 2x cosx(5 + 2 cot 2x− tanx)

Remark. One can also solve this problem by applying the product rule for three
terms:

(f · g · h)′ = f ′ · g · h+ f · g′ · h+ f · g · h′

Example 4.21. Find the derivative of

y = xx + sinx
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Applying "ln " directly will not help this time. So, instead, we handle the two
terms on the right separately:

y1 = xx

ln y1 = x lnx

d

dx
(ln y1) =

d

dx
(x lnx)

1

y1
y′1 = lnx+ 1

y′1 = xx(lnx+ 1)

y2 = sinx =⇒ y′2 = cosx

Hence,

y′ = y′1 + y′2 = xx(lnx+ 1) + cos x

Remark. One can also rewrite the expression as

xx + sinx = ex lnx + sinx

and differentiate it directly.

Example 4.22. Find the derivative of:

•

y =

√
(x+ 1)(x+ 2)

(x− 1)(x− 2)

•

y = (cosx)sinx

4.7 Higher Order Derivatives
We can differentiate a function more than once (assuming differentiability):

d2y

dx2
=

d

dx

(
dy

dx

)
= y′′ = D2

xy

For any non-negative integer n,

dny

dxn
= y(n) = Dn

xy
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Remark. By convention,
d0y

dx0
= y(0) = y

Example 4.23. Find y(n) if y = sinx. Notice that

y(0) = sinx

y(1) = cosx

y(2) = − sinx

y(3) = − cosx

and y(4) = sinx = y(0). That is, it repeats every four times. Therefore,

y(n) =


sinx if n = 4m

cosx if n = 4m+ 1

− sinx if n = 4m+ 2

− cosx if n = 4m+ 3

for any non-negative integer m.

Example 4.24. Find
dy

dx

∣∣∣∣
(1,0)

and
d2y

dx2

∣∣∣∣
(1,0)

if

y3 + y = x3 − x
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