MATH 1510 Chapter 3

3.1 Introduction

A highly imprecise "definition":

A continuous function is one whose graph can be drawn without lifting your pencil from the paper.

Definition 3.1. A function f(x) is **continuous** at x = a if:

$$\lim_{x \to a} f(x) = f(a)$$

The equation " $\lim_{x \to a} f(x) = f(a)$ " actually means:

- $a \in D_f$
- $\lim_{x \to a} f(x)$ exists
- $\lim_{x \to a} f(x) = f(a)$

There are five possibilities:

$$\lim_{x \to a} f(x) \begin{cases} = L & \begin{cases} a \notin D_f & \text{(case 1a)} \\ a \in D_f \text{ but } f(a) \neq L & \text{(case 1b)} \\ a \in D_f \text{ and } f(a) = L & \text{(case 1c)} \end{cases} \\ \\ \text{DNE} & \begin{cases} a \notin D_f & \text{(case 2a)} \\ a \in D_f & \text{(case 2b)} \end{cases} \end{cases}$$

We can further define continuity over an interval:

Definition 3.2. We say that f(x) is continuous on (a, b) if f(x) is continuous at c for any $c \in (a, b)$. We say that f(x) is continuous on [a, b) if f(x) is continuous on (a, b) and at a, in the sense that

$$\lim_{x \to a^+} f(x) = f(a)$$

We say that f(x) is continuous on (a, b] if f(x) is continuous on (a, b) and at b, in the sense that

$$\lim_{x \to b^-} f(x) = f(b)$$

We say that f(x) is continuous on [a, b] if f(x) is continuous on (a, b) and at both a, b.

Example 3.3. Given that:

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

Show that f(x) is continuous at 0.

Example 3.4. Given that:

$$f(x) = \begin{cases} xe^x & \text{if } x \ge 0\\ \cos x + c & \text{if } x < 0 \end{cases}$$

Find the value(s) of the constant c such that f is continuous at 0.

3.2 Important results regarding continuity

Proposition 3.5. • *If f*, *g are continuous at a*, *then:*

$$f \pm g$$
, $f \cdot g$, $\frac{f}{g}$ (if $g(a) \neq 0$)

are all continuous at a.

- If f is continuous at a and g is continuous at f(a), then $g \circ f$ is continuous at a
- "Elementary functions" (as in section 1.5) are all continuous on their domains.

Proof of Proposition 3.5. See Proposition 1 in Appendix 2 and Theorem 3 in Appendix 4. \Box

Example 3.6. Consider:

$$\lim_{x \to 1} (x^2 + \sqrt{x} + 2^x)$$

Let:

$$f(x) = x^2 + \sqrt{x} + 2^x$$

Since the functions x^2 , \sqrt{x} , 2^x are elementary with implied domains \mathbb{R} , $[0, +\infty)$, \mathbb{R} respectively, f is continuous on $[0, +\infty)$, in particular, at x = 1. Hence,

$$\lim_{x \to 1} (x^2 + \sqrt{x} + 2^x) = \lim_{x \to 1} f(x) = f(1) = 4$$

That justifies why we could sometimes compute limits by direct substitution.

Theorem 3.7 (Extreme Value Theorem EVT). Suppose f is continuous on [a, b]. Then, f attains its maximum and minimum, i.e., there exist $c, d \in [a, b]$, such that:

$$f(c) \le f(x) \le f(d)$$

.

for all $x \in [a, b]$.

Proof of Extreme Value Theorem (EVT). See Theorem 2 in Appendix 2. \Box

Example:

Theorem 3.8 (Intermediate Value Theorem IVT). If f is continuous on [a, b], then, for any $v \in [f(a), f(b)]$ (or [f(b), f(a)]),

f(c) = v for some $c \in [a, b]$.

Proof of Intermediate Value Theorem (IVT). See Theorem 3 in Appendix 2. \Box

Example:

Counterexample:

Theorem 3.9 (Bolzanos Theorem). Suppose f is continuous on [a, b]. If f(a), f(b) have opposite signs, then:

f(c) = 0 for some $c \in (a, b)$.

(This guarantees that there is at least one root in (a, b), but it is possible to have more.)

Proof of Bolzano's Theorem. Putting v = 0 in Theorem 3.8 (Intermediate Value Theorem (IVT)).

Example:

Remark. For Theorem Theorem 3.7 (Extreme Value Theorem (EVT)), Theorem 3.8 (Intermediate Value Theorem (IVT)) and Theorem 3.9 (Bolzano's Theorem), it is actually crucial that f is continuous on a closed interval [a, b], instead of (a, b], [a, b) or (a, b).

Example 3.10. Show that

$$x^2 = \cos x$$

has a solution in \mathbb{R} .

Example 3.11 (Pancake Theorem). Show that, no matter what shape a pancake is, what angle it's being cut at ($\theta \in (0, 180^\circ)$), it can always be cut into two equal halves (by moving x).

