Math 1510 Chapter 2

2.1 Limits of Functions on the Real Line

Informally, the **limit** $\lim_{x\to a} f(x)$ of a function f at a is a value which f(x) approaches as x approaches a (but not at a).

Example 2.1. Consider $f(x) = \frac{x^2 - 4}{x - 2}$. Note that the function f is not defined at 2.

For x near 2, we have:

x	f(x)	
2.1	4.1	
2.01	4.01	
2.001	4.001	
1.9	3.9	
1.99	3.99	
1.999	3.999	

Observe that when x approaches 2 from either left of right, f(x) appears to approach 4. Hence, the limit $\lim_{x\to a} f(x)$ should be 4.

This turns out to be true, and is not surprising, since we can rewrite f(x) as

follows:

$$f(x) = \begin{cases} \frac{(x+2)(x-2)}{x-2}, & \text{if } x \neq 2; \\ \text{undefined}, & \text{if } x = 2. \end{cases}$$
$$= \begin{cases} x+2, & \text{if } x \neq 2; \\ \text{undefined}, & \text{if } x = 2. \end{cases}$$

Hence, all along we have really been asking what x + 2 tends to as x tends to 2.

2.1.1 Basic Properties

Theorem 2.2. If $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist, then, for any constant $k \in \mathbb{R}$, we have:

$$\begin{split} \lim_{x \to a} (f(x) \pm g(x)) &= \left(\lim_{x \to a} f(x)\right) \pm \left(\lim_{x \to a} g(x)\right) \\ \lim_{x \to a} (f(x) \cdot g(x)) &= \left(\lim_{x \to a} f(x)\right) \cdot \left(\lim_{x \to a} g(x)\right) \\ \lim_{x \to a} \frac{f(x)}{g(x)} &= \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad (If \lim_{x \to a} g(x) \neq 0) \\ \lim_{x \to a} kf(x) &= k \left(\lim_{x \to a} f(x)\right) \\ \lim_{x \to a} f(x)^k &= \left(\lim_{x \to a} f(x)\right)^k \quad (If \lim_{x \to a} f(x) > 0)) \end{split}$$

Example 2.3. Compute the following limits, if they exist:

•
$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 - 5x - 6}$$

•
$$\lim_{x \to 4} \frac{2 - \sqrt{x}}{16 - x^2}$$

2.2 One-Sided Limits

• We write $\lim_{x\to a^+} f(x) = L$ if f(x) approaches L as x approaches a from the right. We call this L the **right limit** of f at a.

Similarly, we write lim_{x→a⁻} f(x) = L if f(x) approaches L as x approaches a from the left. We call this L the left limit of f at a.

The limit $\lim_{x\to a} f(x)$ is sometimes called the **double-sided limit** of f at a. It exists if and only if both one-sided limits exist and are equal to each other. In which case, we have:

$$\lim_{x \to a} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x).$$

Example 2.4. Consider the function:

$$f(x) = \begin{cases} \sin x & \text{if } x > 0\\ e^x & \text{if } x < 0\\ -1 & \text{if } x = 0 \end{cases}$$

Its left-hand limit and right-hand limit at 0 are:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} e^{x} = e^{0} = 1$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \sin x = \sin 0 = 0$$

Since the limits obtained by approaching from the left and right are different, $\lim_{x\to 0} f(x)$ DNE (does not exist).

Open in browser

Exercise 2.5. Define

$$f(x) = \begin{cases} x - 1 & \text{if } 1 \le x \le 2, \\ 2x + 3 & \text{if } 2 < x \le 4, \\ x^2 & \text{otherwise.} \end{cases}$$

Compute $\lim_{x\to 2^+} f(x)$ and $\lim_{x\to 2^-} f(x)$. Then, find $\lim_{x\to 2} f(x)$, if it exists.

Answers.

1.

$$\lim_{x \to 2^+} f(x) = 7$$
$$\lim_{x \to 2^-} f(x) = 1$$

2. Since $\lim_{x\to 2^+} f(x) \neq \lim_{x\to 2^-} f(x)$, the double-sided limit $\lim_{x\to 2} f(x)$ does not exist.

2.2.1 Examples where the limit does not exist

Example 2.6. • $\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$ (DNE).

•
$$\lim_{x\to 0} \frac{1}{x} = \text{DNE}$$
, since $\lim_{x\to 0^-} \frac{1}{x} = -\infty$, while $\lim_{x\to 0^+} \frac{1}{x} = \infty$
Open in browser

•
$$f(x) = \begin{cases} \sin x & \text{if } x > 0\\ e^x & \text{if } x < 0\\ -1 & \text{if } x = 0 \end{cases}$$
$$\lim_{x \to 0} f(x) \text{ DNE.}$$

Open in browser

2.3 Limit at $\pm \infty$

Informally, the limit $\lim_{x\to+\infty} f(x)$ of f at ∞ is the value, if it exists, that f approaches as x tends towards infinity.

Similarly, the limit $\lim_{x\to-\infty} f(x)$ of f at $-\infty$ is the value, if it exists, that f approaches as x tends towards minus infinity.

Example 2.7.

$$\lim_{x \to +\infty} \frac{2x+1}{5x-2}$$

•

$$\lim_{x \to -\infty} \frac{-3x + 5}{9x^2 + 8x + 7}$$

$$\lim_{x \to +\infty} \frac{x^2 + 1}{1 - 2x}$$

2.4 Sequences

A function f whose domain is \mathbb{N} (all positive integers) is called a **sequence**. In this case we often use the notation:

$$a_n$$
 (instead of $f(n)$)

to denote the value of the function at $n \in \mathbb{N}$.

Example 2.8. Let:

$$a_n = \left(\frac{1}{2}\right)^{n-1},$$

then:

$$a_1 = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{4}, \dots$$

We can graph such functions in the same way in which we graph functions who domains are the real line. The graph of a sequence looks like a collection of dots intead of curves:

And, like we do for functions on the real line, we could also consider the limit of a sequence at infinity (though it's not so meaningful to consider the limit of a sequence at a given point). In this example, it's clear that:

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \left(\frac{1}{2}\right)^{n-1} = 0.$$

Example 2.9.

$$\lim_{n \to +\infty} 2^n = +\infty \text{ (DNE)}$$
$$\lim_{n \to +\infty} \left(-\frac{1}{3}\right)^n = 0$$
$$\lim_{n \to +\infty} (-3)^n \text{ DNE}$$

Proposition 2.10. Let a be a real number, then:

$$\lim_{n \to \infty} a^n \quad \begin{cases} = +\infty(DNE) & \text{if } a > 1; \\ = 1 & \text{if } a = 1; \\ = 0 & \text{if } -1 < a < 1; \\ DNE & \text{if } a \leq -1. \end{cases}$$

Example 2.11. Find:

$$\lim_{n \to +\infty} \left(\frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n} \right)$$

2.5 Squeeze Theorem for Functions on the Real Line

Theorem 2.12 (Squeeze Theorem). Let $a \in \mathbb{R}$, A an open neighborhood of a which does not necessarily contain a itself. Let $f, g, h : A \longrightarrow \mathbb{R}$ be functions such that:

$$g(x) \le f(x) \le h(x)$$
 for all $x \in A$,

and

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L.$$

Then, $\lim_{x \to a} f(x) = L$.

Similary,

Theorem 2.13. If f, g, h are functions on \mathbb{R} such that:

$$g(x) \le f(x) \le h(x)$$

for all x sufficiently large, and

$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} h(x) = L,$$

then $\lim_{x \to \infty} f(x) = L$.

Exercise 2.14. Find the following limits, if they exist:

•
$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right)$$

• $\lim_{x \to \infty} \frac{\sin x}{x}$

•
$$\lim_{x \to \infty} \frac{x + \sin x}{x - \sin x}$$

Theorem 2.15.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Corollary 2.16.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \; .$$

Proof of Corollary 2.16.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \left(\frac{1 + \cos x}{1 + \cos x}\right)$$
$$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2 (1 + \cos x)}$$
$$= \lim_{x \to 0} \frac{\sin^2 x}{x^2 (1 + \cos x)}$$
$$= \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \frac{1}{1 + \cos x}$$
$$= 1^2 \cdot \frac{1}{1 + 1} = \frac{1}{2}$$

Corollary 2.17.

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \; .$$

Exercise 2.18. Find the following limits, if they exist:

•
$$\lim_{x \to 0} \frac{\sin(5x)}{\tan(3x)}$$

•
$$\lim_{x \to 0} \frac{x^3 \cos\left(\frac{1}{x}\right)}{\tan x}$$

Definition 2.19. The constant e, known as **Euler's number**, is defined as the limit of a sequence:

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^r$$

Theorem 2.20.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

Corollary 2.21.

$$\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = \lim_{x \to 0} (1 - x)^{\frac{1}{x}} = \frac{1}{e}$$

For all $a \in \mathbb{R}$,

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$$

Exercise 2.22. Find:

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x$$

2.6 Indeterminate forms

While computing the limit (or one-sided limit) of f(x) at x = a (or $\pm \infty$), one might "substitute" x = a (or $\pm \infty$) into f(x) and get one of the followings:

$$\frac{0}{0}, \ \frac{\pm \infty}{\pm \infty}, \ 0 \cdot (\pm \infty), \ \infty - \infty, \ \infty^0, \ 0^0, \ 1^{\pm \infty}$$

which are called **indeterminate forms** . In this case, we need to simplify/alter f(x):

1.

$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^2 - 3x + 2}$$
2.

$$\lim_{x \to 0} \frac{1 - \sqrt{x + 1}}{x}$$
3.

$$\lim_{x \to -\infty} \frac{|x|}{x}$$
4.

$$\lim_{x \to +\infty} \frac{4x^3 - \sqrt{x^{10} - 8}}{(x + 5)^2}$$
5.

$$\lim_{x \to +\infty} \frac{4x^3 - \sqrt{x^{10} - 8}}{(x + 5)^2}$$
6.

$$\lim_{x \to +\infty} \frac{4x^3 - \sqrt{x^{10} - 8}}{(x + 5)^2}$$
6.

$$\lim_{x \to +\infty} \frac{100^n}{n!}$$
7.
8.

$$\lim_{x \to -2} \frac{x^3 - 4x^2 - 7x + 10}{x + 2}$$
8.

$$\lim_{x \to -2} \frac{100^n}{n!}$$
9.

$$\lim_{x \to +\infty} \frac{100^n}{n!}$$
10.

$$\lim_{x \to +\infty} \cos\left(\frac{\sin x}{x}\right)$$