Math 1510 Chapter 2

2.1 Limits of Functions on the Real Line

Informally, the limit $\lim_{x\to a} f(x)$ of a function f at a is a value which $f(x)$ approaches as x approaches a (but not at a).

Example 2.1. Consider $f(x) = \frac{x^2 - 4}{x^2 - 4}$ $\frac{x}{x-2}$. Note that the function f is not defined at 2.

For x near 2, we have:

Observe that when x approaches 2 from either left of right, $f(x)$ appears to approach 4. Hence, the limit $\lim_{x\to a} f(x)$ should be 4.

This turns out to be true, and is not surprising, since we can rewrite $f(x)$ as

follows:

$$
f(x) = \begin{cases} \frac{(x+2)(x-2)}{x-2}, & \text{if } x \neq 2; \\ \text{undefined}, & \text{if } x = 2. \end{cases}
$$

$$
= \begin{cases} x+2, & \text{if } x \neq 2; \\ \text{undefined}, & \text{if } x = 2. \end{cases}
$$

Hence, all along we have really been asking what $x + 2$ tends to as x tends to 2.

2.1.1 Basic Properties

Theorem 2.2. If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ *exist, then, for any constant* $k \in \mathbb{R}$ *, we have:*

$$
\lim_{x \to a} (f(x) \pm g(x)) = \left(\lim_{x \to a} f(x)\right) \pm \left(\lim_{x \to a} g(x)\right)
$$

$$
\lim_{x \to a} (f(x) \cdot g(x)) = \left(\lim_{x \to a} f(x)\right) \cdot \left(\lim_{x \to a} g(x)\right)
$$

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad (If \lim_{x \to a} g(x) \neq 0)
$$

$$
\lim_{x \to a} kf(x) = k \left(\lim_{x \to a} f(x)\right)
$$

$$
\lim_{x \to a} f(x)^k = \left(\lim_{x \to a} f(x)\right)^k \quad (If \lim_{x \to a} f(x) > 0)
$$

Example 2.3. Compute the following limits, if they exist:

•
$$
\lim_{x \to -1} \frac{x^2 - 1}{x^2 - 5x - 6}
$$

$$
\bullet \ \lim_{x \to 4} \frac{2 - \sqrt{x}}{16 - x^2}
$$

2.2 One-Sided Limits

• We write $\lim_{x \to a^+} f(x) = L$ if $f(x)$ approaches L as x approaches a *from the right*. We call this L the **right limit** of f at a .

• Similarly, we write $\lim f(x) = L$ if $f(x)$ approaches L as x approaches a $x \rightarrow a^$ *from the left* . We call this L the **left limit** of f at a .

The limit $\lim_{x\to a} f(x)$ is sometimes called the **double-sided limit** of f at a. It exists if and only if both one-sided limits exist and are equal to each other. In which case, we have:

$$
\lim_{x \to a} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x).
$$

Example 2.4. Consider the function:

$$
f(x) = \begin{cases} \sin x & \text{if } x > 0\\ e^x & \text{if } x < 0\\ -1 & \text{if } x = 0 \end{cases}
$$

Its left-hand limit and right-hand limit at 0 are:

$$
\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} e^{x} = e^{0} = 1
$$

\n
$$
\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \sin x = \sin 0 = 0
$$

Since the limits obtained by approaching from the left and right are different, $\lim_{x\to 0} f(x)$ DNE (does not exist).

[Open in browser](https://www.desmos.com/calculator/dmq327nbrp?embed)

Exercise 2.5. Define

$$
f(x) = \begin{cases} x - 1 & \text{if } 1 \le x \le 2, \\ 2x + 3 & \text{if } 2 < x \le 4, \\ x^2 & \text{otherwise.} \end{cases}
$$

Compute $\lim_{x\to 2^+} f(x)$ and $\lim_{x\to 2^-} f(x)$. Then, find $\lim_{x\to 2} f(x)$, if it exists.

Answers.

1.

$$
\lim_{x \to 2^+} f(x) = 7
$$

$$
\lim_{x \to 2^-} f(x) = 1
$$

2. Since $\lim_{x\to 2^+} f(x) \neq \lim_{x\to 2^-} f(x)$, the double-sided limit $\lim_{x\to 2} f(x)$ does not exist.

2.2.1 Examples where the limit does not exist

1 Example 2.6. $\frac{1}{(x-1)^2} = +\infty$ (DNE). $10⁷$ 8 $\,$ 6 $\,$ $\overline{4}$ \overline{c} $\overline{2}$ -4 -2 $\boldsymbol{0}$ $\overline{4}$ $\overline{6}$

•
$$
\lim_{x \to 0} \frac{1}{x} =
$$
 DNE, since $\lim_{x \to 0^-} \frac{1}{x} = -\infty$, while $\lim_{x \to 0^+} \frac{1}{x} = \infty$
Open in browser

•
$$
f(x) = \begin{cases} \sin x & \text{if } x > 0 \\ e^x & \text{if } x < 0 \\ -1 & \text{if } x = 0 \end{cases}
$$

$$
\lim_{x \to 0} f(x) \text{ DNE.}
$$

[Open in browser](https://www.desmos.com/calculator/dmq327nbrp?embed)

2.3 Limit at $\pm \infty$

Informally, the limit $\lim_{x \to +\infty} f(x)$ of f at ∞ is the value, if it exists, that f approaches as x tends towards infinity.

Simlarly, the limit $\lim_{x \to -\infty} f(x)$ of f at $-\infty$ is the value, if it exists, that f approaches as x tends towards minus infinity.

Example 2.7.

$$
\lim_{x \to +\infty} \frac{2x+1}{5x-2}
$$

•

$$
\lim_{x \to -\infty} \frac{-3x + 5}{9x^2 + 8x + 7}
$$

$$
\lim_{x \to +\infty} \frac{x^2 + 1}{1 - 2x}
$$

2.4 Sequences

•

A function f whose domain is $\mathbb N$ (all positive integers) is called a **sequence**. In this case we often use the notation:

$$
a_n \quad \text{(instead of } f(n))
$$

to denote the value of the function at $n \in \mathbb{N}$.

Example 2.8. Let:

$$
a_n = \left(\frac{1}{2}\right)^{n-1},
$$

then:

$$
a_1 = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{4}, \dots
$$

We can graph such functions in the same way in which we graph functions who domains are the real line. The graph of a sequence looks like a collection of dots intead of curves:

And, like we do for functions on the real line, we could also consider the limit of a sequence at infinity (though it's not so meaningful to consider the limit of a sequence at a given point). In this example, it's clear that:

$$
\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \left(\frac{1}{2}\right)^{n-1} = 0.
$$

Example 2.9.

$$
\lim_{n \to +\infty} 2^n = +\infty \text{ (DNE)}
$$

$$
\lim_{n \to +\infty} \left(-\frac{1}{3} \right)^n = 0
$$

$$
\lim_{n \to +\infty} (-3)^n \text{ DNE}
$$

Proposition 2.10. *Let* a *be a real number, then:*

$$
\lim_{n \to \infty} a^n \quad \begin{cases} = +\infty(DNE) & \text{if } a > 1; \\ = 1 & \text{if } a = 1; \\ = 0 & \text{if } -1 < a < 1; \\ DNE & \text{if } a \le -1. \end{cases}
$$

Example 2.11. Find:

$$
\lim_{n \to +\infty} \left(\frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n} \right)
$$

2.5 Squeeze Theorem for Functions on the Real Line

Theorem 2.12 (Squeeze Theorem). Let $a \in \mathbb{R}$, A an open neighborhood of a *which does not necessarily contain a itself. Let* $f, g, h : A \longrightarrow \mathbb{R}$ *be functions such that:*

$$
g(x) \le f(x) \le h(x) \quad for all x \in A,
$$

and

$$
\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L.
$$

Then, $\lim_{x \to a} f(x) = L$.

Similary,

Theorem 2.13. *If* f , g , h *are functions on* \mathbb{R} *such that:*

$$
g(x) \le f(x) \le h(x)
$$

for all x *sufficiently large, and*

$$
\lim_{x \to \infty} g(x) = \lim_{x \to \infty} h(x) = L,
$$

then $\lim_{x \to \infty} f(x) = L$.

Exercise 2.14. Find the following limits, if they exist:

•
$$
\lim_{x \to 0} x \sin\left(\frac{1}{x}\right)
$$

$$
\bullet \ \lim_{x \to \infty} \frac{\sin x}{x}
$$

$$
\bullet \ \lim_{x \to \infty} \frac{x + \sin x}{x - \sin x}
$$

Theorem 2.15.

$$
\lim_{x \to 0} \frac{\sin x}{x} = 1.
$$

Corollary 2.16.

$$
\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} .
$$

Proof of Corollary 2.16.

$$
\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \left(\frac{1 + \cos x}{1 + \cos x}\right)
$$

$$
= \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2 (1 + \cos x)}
$$

$$
= \lim_{x \to 0} \frac{\sin^2 x}{x^2 (1 + \cos x)}
$$

$$
= \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \frac{1}{1 + \cos x}
$$

$$
= 1^2 \cdot \frac{1}{1 + 1} = \frac{1}{2}
$$

 \Box

Corollary 2.17.

$$
\lim_{x \to 0} \frac{1 - \cos x}{x} = 0.
$$

Exercise 2.18. Find the following limits, if they exist:

$$
\bullet \ \lim_{x \to 0} \frac{\sin(5x)}{\tan(3x)}
$$

$$
\bullet \ \lim_{x \to 0} \frac{x^3 \cos\left(\frac{1}{x}\right)}{\tan x}
$$

Definition 2.19. The constant e , known as **Euler's number**, is defined as the limit of a sequence: n

$$
e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n
$$

Theorem 2.20.

$$
\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e
$$

Corollary 2.21.

$$
\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = \lim_{x \to 0} (1 - x)^{\frac{1}{x}} = \frac{1}{e}
$$

For all $a \in \mathbb{R}$ *,*

$$
\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a
$$

Exercise 2.22. Find:

$$
\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^x
$$

2.6 Indeterminate forms

While computing the limit (or one-sided limit) of $f(x)$ at $x = a$ (or $\pm \infty$), one might "substitute" $x = a$ (or $\pm \infty$) into $f(x)$ and get one of the followings:

$$
\frac{0}{0}, \ \frac{\pm \infty}{\pm \infty}, \ 0 \cdot (\pm \infty), \ \infty - \infty, \ \infty^0, \ 0^0, \ 1^{\pm \infty}
$$

which are called indeterminate forms . In this case, we need to simplify/alter $f(x)$:

1.
\n
$$
\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^2 - 3x + 2}
$$
\n2.
\n
$$
\lim_{x \to 0} \frac{1 - \sqrt{x + 1}}{x}
$$
\n3.
\n
$$
\lim_{x \to +\infty} \frac{|x|}{x}
$$
\n4.
\n
$$
\lim_{x \to +\infty} \frac{4x^3 - \sqrt{x^{10} - 8}}{(x + 5)^2}
$$
\n5.
\n
$$
\lim_{x \to +\infty} (x - \sqrt{x^2 + x})
$$
\n6.
\n
$$
\lim_{x \to 0^+} \ln x
$$
\n7.
\n
$$
\lim_{x \to -2} \frac{x^3 - 4x^2 - 7x + 10}{x + 2}
$$
\n8.
\n
$$
\lim_{n \to +\infty} \frac{100^n}{n!}
$$
\n9.
\n
$$
\lim_{x \to +\infty} \frac{\cos 2x - 1}{\sin^2 x}
$$
\n10.
\n
$$
\lim_{x \to +\infty} \cos \left(\frac{\sin x}{x} \right)
$$