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Appendix 4: Misc. Results

Proposition 1

lim
x→∞

ax =


∞ (DNE) if a > 1

1 if a = 1

0 if 0 < a < 1

, lim
x→∞

xa =


∞ (DNE) if a > 0

1 if a = 0

0 if a < 0

where x ∈ R.

Proof

lim
x→∞

ax

The statement is trivial when a = 1.

When a > 1, we have ln a > 0. Notice that

ax = ex ln a

By continuity of ex and (ln a)x,

lim
x→∞

ax = lim
x→∞

ex ln a = e∞ =∞

Similarly, when 1 > a > 0, we have ln a < 0.

lim
x→∞

ax = lim
x→∞

ex ln a = e−∞ = 0

lim
x→∞

xa

The statement is trivial when a = 0. As above, when a > 0, by continuity of ex, lnx and
ax,

lim
x→∞

xa = lim
x→∞

ea lnx = e∞ =∞

When a < 0,
lim
x→∞

xa = lim
x→∞

ea lnx = e−∞ = 0
�

Proposition 2

lim
n→∞

an


=∞ (DNE) if a > 1

= 1 if a = 1

= 0 if − 1 < a < 1

DNE, neither ±∞ if a ≤ −1

, lim
n→∞

na =


∞ (DNE) if a > 0

1 if a = 0

0 if a < 0

where n ∈ Z+.
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Proof

lim
n→∞

an

Notice that (n)n∈Z+ is a sequence with lim
n→∞

n =∞. By sequential criterion, the statements

hold when a > 0. The statement is trivial when a = 0.

When 0 > a > −1, the result follows by applying squeeze theorem on

−|a|n ≤ an ≤ |a|n

When −1 ≥ a, observe that

|a2n − a2n+1| = |a|2n|1− a| ≥ 2

Assume lim
n→∞

an = L. Then,

∃N,∀n > N, |an − L| ≤ 1

2

=⇒ 2 ≤ |a2n − a2n+1| = |a2n − L+ L− a2n+1| ≤ |a2n − L|+ |L− a2n+1| ≤ 1,

which is a contradiction. Thus, lim
n→∞

an DNE. Moreover, assume lim
n→∞

an =∞. Then,

∃N,∀n > N, an > 1 =⇒ 1 < a2n+1 = |a|2na < 0,

which is a contradiction. A similar argument will show that lim
n→∞

an = −∞ is impossible

too.

lim
n→∞

na

As above, the results follow from sequential criterion. �

Theorem 1
Suppose f(x) is a function such that lim

x→a
f(x) exist. ∀c ∈ R,

lim
x→a

f(x)c =
(

lim
x→a

f(x)
)c

provided that lim
x→a

f(x) > 0

The same hold if a is replaced by a+, a−,∞ or −∞.

Proof

Suppose lim
x→a

f(x) = L > 0.

∃δ > 0,∀x such that 0 < |x− a| < δ, |f(x)− L| < L

2
=⇒ f(x) >

L

2
> 0

So f(x)c is well-defined for x around a.

Given sequence (an)n∈Z+ such that an 6= a and lim
n→∞

an = a, by sequential criterion and

continuity of lnx at L,

lim
n→∞

f(an) = L =⇒ lim
n→∞

(c ln f(an)) = c lnL

By continuity of ex at c lnL,

lim
n→∞

f(an)c = lim
n→∞

ec ln f(an) = ec lnL = Lc

The others can be handled similarly. 2
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Theorem 2
Suppose (an)n∈Z+ is a sequence such that lim

n→∞
an exists. ∀c ∈ R,

lim
n→∞

acn =
(

lim
n→∞

an

)c
provided that lim

n→∞
an > 0

Proof

Suppose lim
n→∞

an = L > 0.

∃N ∈ Z+,∀n > N, |an − L| <
L

2
=⇒ an >

L

2
> 0

So acn is well-defined for sufficiently large n. By continuity of ex, lnx,

lim
n→∞

acn = lim
n→∞

ec ln an = ec lnL = Lc

�

Theorem 3
“Elementary functions” are all continuous on their domains.
(xa, polynomials, rational functions, ax, loga x, trigonometric functions)

Proof

f(x) = ax with Df = R where a > 0 and a 6= 1

Since ax = ex ln a, the continuity of f(x) follows from the continuity of ex and (ln a)x.

f(x) = loga x with Df = (0,∞) where a > 0 and a 6= 1

Since loga x =
lnx

ln a
where ln a 6= 0, the continuity of f(x) follows from the continuity of

lnx and
x

ln a
.

f(x) = xa where a 6= 0

When x > 0,
f(x) = xa = ea lnx

is continuous at x.

When x < 0, we must have a =
p

q
for some p, q ∈ Z where q is odd. Then,

f(x) = x
p
q = ( q

√
x)p = (− q

√
(−x))p = (−1)p(−x)a

Thus, f is continuous at x.

At x = 0, we must have a > 0. By continuity of ex, lnx and ax,

lim
x→0+

f(x) = lim
x→0+

ea lnx = e−∞ = 0 = f(0)
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If Df = R, then we must have a =
p

q
for some p, q ∈ Z where q is odd.

lim
x→0−

f(x) = lim
x→0−

(−1)p(−x)a = lim
y→0+

(−1)pya = 0 = f(0)

Hence, f is continuous at 0.

f(x) is a polynomial with Df = R

Follows from the fact that constant functions and xn with n ∈ Z+ are continuous.

f(x) is a rational function

Simply because f(x) =
p(x)

q(x)
where p(x), q(x) are polynomials.

f(x) is a trigonometric function

Clearly, it’s enough to show the continuity of sinx, cosx over R.

By comparing areas, we can see that, for all x ∈ (0, π
2
),

0 ≤ 1

2
sinx ≤ 1

2
x

By squeeze theorem, lim
x→0+

sinx = 0 = sin 0. Moreover,

lim
x→0−

sinx = lim
y→0+

sin(−y) = lim
y→0+

(− sin y) = 0

Thus, sinx is continuous at 0. Furthermore,

lim
x→0

cosx = lim
x→0

√
1− sin2 x = 1 = cos 0

So, cos x is continuous at 0. Hence,

lim
h→0

sin(x+ h) = lim
h→0

(sinx cosh+ cosx sinh) = sinx

lim
h→0

cos(x+ h) = lim
h→0

(cosx cosh− sinx sinh) = cos x

and sinx, cosx are continuous over R. �

Theorem 4

lim
x→0

sinx

x
= 1 and lim

x→0

1− cosx

x
= 0

where x is in radian.

Proof

Let us handle lim
x→0

sinx

x
first. When x > 0, let’s consider the following graph:
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By comparing areas, we have

1

2
sinx cosx ≤ 1

2
x ≤ 1

2
tanx =⇒ cosx ≤ x

sinx
≤ 1

cosx

By continuity of cosx,

lim
x→0+

cosx = lim
x→0+

1

cosx
= 1,

by squeeze theorem, we have lim
x→0+

x

sinx
= 1.

When x < 0, by letting y = −x,

lim
x→0−

x

sinx
= lim

y→0+

−y
sin(−y)

= lim
y→0+

y

sin y
= 1

Hence,

lim
x→0

sinx

x
=

1

lim
x→0

x
sinx

= 1

as desired.

Finally,

lim
x→0

1− cosx

x
= lim

x→0

2 sin2 x
2

x
= lim

x→0

(
sin

x

2
·

sin x
2

x
2

)
= 0

�

Theorem 5: Alternative definition of ex

For any x ∈ R,

ex = lim
n→∞

(
1 +

x

n

)n
where n ∈ Z+.

Proof

First of all,

lim
n→∞

(
1 +

x

n

)
= 1 =⇒ 1 +

x

n
> 0 for sufficiently large n
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By L’Hôpital’s rule,

lim
y→∞

ln

(
1 +

x

y

)y
= lim

y→∞

ln

(
1 +

x

y

)
y−1

(
0

0
form

)

= lim
y→∞

(
1 +

x

y

)−1 −x
y2

−y−2
= x

By sequential criterion and continuity of ex,

lim
n→∞

(
1 +

x

n

)n
= lim

n→∞
eln(1+

x
n)

n

= ex

�

Theorem 6: First derivative test
Suppose c ∈ [a, b], f is continuous over [a, b] and f is differentiable, f ′ 6= 0 is continuous
over [a, b] \ {c}.
If c ∈ (a, b) is a critical point of f , then
(a) f ′ > 0 over (a, c) and f ′ < 0 over (c, b)

=⇒ c is a local maximum.
(b) f ′ < 0 over (a, c) and f ′ > 0 over (c, b)

=⇒ c is a local minimum.
(c) Otherwise

=⇒ c is neither a local maximum nor minimum.
If c = a, then
(a) f ′ < 0 over (c, b)

=⇒ c is a local maximum.
(b) f ′ > 0 over (c, b)

=⇒ c is a local minimum.
If c = b, then
(a) f ′ > 0 over (a, c)

=⇒ c is a local maximum.
(b) f ′ < 0 over (a, c)

=⇒ c is a local minimum.

Proof

c ∈ (a, b) is a critical point of f

If f ′ > 0 over (a, c) and f ′ < 0 over (c, b), then, by MVT,

∀y ∈ (a, c),∃d ∈ (y, c),
f(c)− f(y)

c− y
= f ′(d) > 0 =⇒ f(c) > f(y)

∀y ∈ (c, b),∃d ∈ (c, y),
f(c)− f(y)

c− y
= f ′(d) < 0 =⇒ f(c) > f(y)

Thus, f(c) is the maximum over (a, b).

The argument for local minimum is similar.

6



If f ′ > 0 over (a, c) ∪ (c, b), then, similarly,

∀x ∈ (a, c), y ∈ (c, b), f(x) < f(c) < f(y)

Then, c is neither local max nor min. If f ′ < 0 over (a, c) ∪ (c, b), then, c is neither local
max nor min for a similar reason.

Otherwise, for some x, y ∈ (a, c) or x, y ∈ (c, b),

f ′(x) > 0, f ′(y) < 0 =⇒ f ′(z) = 0 for some z ∈ (a, c) ∪ (c, b)

by IVT, which contradicts with our assumption.

c = a

If f ′ < 0 over (c, b), then, by MVT,

∀y ∈ (c, b),∃d ∈ (c, y),
f(c)− f(y)

c− y
= f ′(d) < 0 =⇒ f(c) > f(y)

Thus, f(c) is the maximum over [a, b).

The argument for local minimum is similar.

Otherwise, for some x, y ∈ (c, b),

f ′(x) > 0, f ′(y) < 0 =⇒ f ′(z) = 0 for some z ∈ (c, b)

by IVT, which contradicts with our assumption.

c = b

Let g(x) = f(a+ b− x). Then, g satisfies the premises over [a, b] and g(a) = f(b).

f ′ > 0 over (a, b) =⇒ g′ < 0 over (a, b) =⇒ g(a) maximum =⇒ f(b) maximum

f ′ < 0 over (a, b) =⇒ g′ > 0 over (a, b) =⇒ g(a) minimum =⇒ f(b) minimum

�

Theorem 7: Second derivative test
Suppose f(x) is differentiable around c, twice-differentiable at c and f ′(c) = 0. Then,
(a) f ′′(c) < 0

=⇒ c is a local maximum.
(b) f ′′(c) > 0

=⇒ c is a local minimum.

Proof

f ′′(c) < 0

Assume the contrary:

∀n ∈ Z+,∃xn ∈
(
c− 1

n
, c+

1

n

)
, f(xn) > f(c)
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WLOG, say, xn is an increasing sequence with lim
n→∞

xn = c. Then,

lim
x→c−

f ′(x)− f ′(c)
x− c

= lim
x→c−

f ′(x)

x− c
= f ′′(c) = L < 0

=⇒ ∃δ > 0,∀x ∈ (c−δ, c),
∣∣∣∣f ′(x)

x− c
− L

∣∣∣∣ < |L|2 =⇒ f ′(x)

x− c
< L+

|L|
2
< 0 =⇒ f ′(x) > 0

WLOG, we may assume f is differentiable over [c− δ, c]. By MVT,

∃n ∈ Z+, xn ∈ (c− δ, c) =⇒ ∃d ∈ (xn, c),
f(xn)− f(c)

xn − c
= f ′(d) < 0

But
d ∈ (c− δ, c) =⇒ 0 < f ′(d) < 0

which is impossible.

f ′′(c) > 0

By considering −f . �

Proposition 3: Alternative definition of concavity
If f is differentiable over an interval I, then

f is concave up (down) ⇐⇒ f ′ is increasing (decreasing)

Proof

=⇒
For any x1, x2 ∈ I such that x1 < x2, for all n ∈ Z+, let

yn =

(
1− 1

2n

)
x1 +

1

2n
x2

Then, yn ∈ (x1, x2) is a decreasing sequence with lim
n→∞

yn = x1. Since f is concave up over

[x1, x2],

f (yn)− f(x1)

yn − x1
≤

(
1− 1

2n

)
f(x1) +

1

2n
f(x2)− f(x1)(

1− 1

2n

)
x1 +

1

2n
x2 − x1

=
f(x2)− f(x1)

x2 − x1

By taking n→∞, we have

f ′(x1) = Rf ′(x1) = lim
n→∞

f (yn)− f(x1)

yn − x1
≤ f(x2)− f(x1)

x2 − x1

On the other hand, let

zn =
1

2n
x1 +

(
1− 1

2n

)
x2
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Then, zn ∈ (x1, x2) is an increasing sequence with lim
n→∞

zn = x2.

f (zn)− f(x2)

zn − x2
≥

1

2n
f(x1) +

(
1− 1

2n

)
f(x2)− f(x2)

1

2n
x1 +

(
1− 1

2n

)
x2 − x2

=
f(x2)− f(x1)

x2 − x1

By taking n→∞, we have

f ′(x2) = Lf ′(x2) = lim
n→∞

f (zn)− f(x2)

zn − x2
≥ f(x2)− f(x1)

x2 − x1

Hence, f ′(x1) ≤ f ′(x2).

⇐=

Given x1, x2 ∈ I such that x1 < x2, let

F (t) = (1− t)f(x1) + tf(x2)− f((1− t)x1 + tx2)

where t ∈ [0, 1]. It suffices to show ∀t ∈ [0, 1], F (t) ≥ 0.

First of all, F (0) = F (1) = 0. Also, F is differentiable over [0, 1] with

F ′(t) = f(x2)− f(x1)− (x2 − x1)f ′((1− t)x1 + tx2)

= (x2 − x1)
(
f(x2)− f(x1)

x2 − x1
− f ′((1− t)x1 + tx2)

)
So, F ′ is a decreasing function.

Assume ∃t0 ∈ (0, 1), F (t0) < 0. Then, by MVT,

∃t1 ∈ (0, t0), 0 >
F (t0)− F (0)

t0 − 0
= F ′(t1)

∃t2 ∈ (t0, 1), 0 <
F (1)− F (t0)

1− t0
= F ′(t2)

Thus, F ′(t1) < 0 < F ′(t2), which is a contradiction.

The statement about concave down can be proved by considering −f . �

Proposition 4
Suppose c ∈ (a, b), f is continuous over (a, b) and differentiable over (a, b) \ {c}. If c is a
point of inflection of f , then one of the followings holds:

(a) f ′′(c) = 0,

(b) f is not twice differentiable at c.

Proof
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Suppose f is twice differentiable at c. Since c is a point of inflection of f , for some ε > 0,
say, f is concave up on (c− ε, c) and concave down on (c, c+ ε). Then, f ′ is increasing on
(c− ε, c) and decreasing on (c, c+ ε). Given x ∈ (c− ε, c),

xn =

(
1− 1

n

)
c+

1

n
x ∈ (c− ε, c)

defines an increasing sequence that approaches c. Since f ′ is increasing on (c−ε, c), f ′(xn)
is an increasing sequence. Since f ′ is continuous at c,

lim
n→∞

f ′(xn) = f ′(c) =⇒ f ′(x) = f ′(x1) ≤ f ′(c)

In other words, f ′ is indeed increasing on (c− ε, c]. By similar arguments, f ′ is decreasing
on [c, c+ ε). Hence,

c is a local maximum of f ′ =⇒ c is a critical point of f ′ =⇒ f ′′(c) = 0

�
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