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Appendix 4: Misc. Results

Proposition 1

oo (DNE) ifa>1 oo (DNE) ifa>0
lima® =<1 ifa=1 ,  limaz*=<1 ifa=0
T—r00 xr—r0Q0
0 f0<a<l1 0 ifa<0
where x € R.
Proof
lim a”
Xr—r00

The statement is trivial when a = 1.

When a > 1, we have Ina > 0. Notice that

aa: — erlna
By continuity of e* and (Ina)z
)
lim a® = lim e*™® = ¢® = 00
Tr—r00 Tr—r00

Similarly, when 1 > a > 0, we have Ina < 0.

lim ¢® = lim e*"% = ¢ =)
T—r00 T—r00

lim ¢
Xr—r00

The statement is trivial when a = 0. As above, when a > 0, by continuity of e, Inz and
ar,

lim 2 = lim e*% = ¢® = o
Tr—r00 Tr—r00

When a < 0,
lim 2% = lim e*™% = ¢ > =0
Tr—r00 r—r00

Proposition 2

=oo (DNE ifa>1
( ) . o (DNE) ifa>0
) = ifa=1 . ]
lim a" ] , lim n* =<1 ifa=0
n—00 = if —1l<a<1 nooo ]
0 ifa<0

DNE, neither £ 00 ifa < -1

where n € Z™T.




Proof

lim a”

n—oo

Notice that (n),cz+ is a sequence with lim n = oco. By sequential criterion, the statements
n—oo

hold when a > 0. The statement is trivial when a = 0.

When 0 > a > —1, the result follows by applying squeeze theorem on
—la|" <a" < |al”
When —1 > a, observe that
la*™ — a®" ™| = |a]*"[1 —a| > 2

Assume lim a" = L. Then,
n—o0

1
INVn >N, o - LI < 5
— 2< ’a2n_a2n+1|:‘a2n_L+L_a2n+1| < |a2"—L|+|L—a2"+1|§1,

which is a contradiction. Thus, lim a” DNE. Moreover, assume lim a" = oo. Then,

n—oo n—oo
dN,Vn >N, a">1 = 1<a®™ =la/*"a <0,

which is a contradiction. A similar argument will show that lim a" = —oco is impossible

too. e

lim n®

n—oo

As above, the results follow from sequential criterion. O

Theorem 1
Suppose f(x) is a function such that lim f(x) exist. Ve € R,

Tr—ra

lim f(z)¢ = (lim f(:zc))c provided that lim f(z) >0

T—a r—a Tr—ra

The same hold if a is replaced by a™,a™, 00 or —c0.

Proof

Suppose lim f(x) = L > 0.
r—a

L L
30 > 0,Vx such that 0 < |z —a| < 4, |f(1:)—L\<§ = f(x)>§>0

So f(z)° is well-defined for x around a.
Given sequence (a,)nez+ such that a, # a and lim a, = a, by sequential criterion and
n—oo

continuity of Inx at L,

lim f(a,) =L = lim (cln f(a,)) =clnL

n—o0 n—oo

By continuity of e* at cln L,

lim f(a,,n)c pr— lim eClnf(a’ﬂ) — eclnL — Lc
n—oo n—00

The others can be handled similarly. 9



Theorem 2

Suppose (a,)nez+ is a sequence such that lim a, exists. Ve € R,
n—oo

lim a;, = (lim an> provided that lim a, >0

n—oo n—oo n—oo

Proof

Suppose lim a, = L > 0.
n—oo

L L
AN € Z*,V¥n > N, ]an—L]<§ — an>§>0

So a;, is well-defined for sufficiently large n. By continuity of e*,Inz,

lim af = lim e = el = [©
n—oo n—oo

Theorem 3
“Elementary functions” are all continuous on their domains.
(x*, polynomials, rational functions, a*,log, z, trigonometric functions)

Proof

f(x) = a® with Dy = R where @ > 0 and a # 1

Since a® = e*!"?, the continuity of f(x) follows from the continuity of e* and (Ina)x.

f(z) = log, x with Dy = (0, 00) where a > 0 and a # 1

Since log, x = T Shere Ina # 0, the continuity of f(x) follows from the continuity of

Ina
Inz and —.
na
f(z) = z* where a # 0
When z > 0,

is continuous at x.

When z < 0, we must have a = P for some p,q € Z where ¢ is odd. Then,
q

Qs

flx) ==

Thus, f is continuous at x.

At x = 0, we must have a > 0. By continuity of e*,Inx and az,

li — i alnz _ ,—00 _ n —
g S = g e = e =0=70)



If Dy =R, then we must have a = b for some p, q € Z where ¢ is odd.
q

lim f(z) = lim (~1P(=a)" = im (~1)"9" = 0 = (0)

Hence, f is continuous at 0.

f(x) is a polynomial with Dy = R

Follows from the fact that constant functions and 2" with n € Z* are continuous.

f(z) is a rational function

p(z)

Simply because f(x) = ——= where p(x), ¢(z) are polynomials.

q(z)

f(z) is a trigonometric function

Clearly, it’s enough to show the continuity of sinx, cosx over R.

radius = 1

By comparing areas, we can see that, for all z € (0, 7),

0<1' <1
—sinzx < —x
-2 -2

By squeeze theorem, lim sinz = 0 = sin (0. Moreover,
z—07+

lim sinz = lim sin(—y) = lim (—siny) =0
i s = Jig sin(=y) = g (—einy)

Thus, sin z is continuous at 0. Furthermore,

limcosz = lim V1 —sin?z = 1 = cos0

z—0 z—0

So, cos x is continuous at 0. Hence,
lim sin(z + h) = lim(sinx cosh + coszsinh) = sinz
h—0 h—0
lim cos(xz + h) = lim(cosz cosh —sinz sinh) = cosz
h—0 h—0

and sin z, cos x are continuous over R.

Theorem 4

sinx . 1—rcoszx
lim =1 and lim — =
z—0 X x—0 x

where z is in radian.

Proof

Let us handle lim " first. When x > 0, let’s consider the following graph:

x—0



tan
sinx

-

radius = 1

By comparing areas, we have

§sinxcosx < -—z<

N —
N —

tanx = cosx <

1

COS T

x
— <
sin
By continuity of cosz,

z—0t

1
lim cosz = lim
by squeeze theorem, we have lim

=1
=0t COS X
x

— = 1.
z—0+ sin x
When z < 0, by letting y = —x,

lim — = lim — = lim — =1
2—0- sinx  y—ot sin(—y)  y—ot siny
Hence,
. sinz 1
li = — — =1
z—0 X lim =
$_>O ST
as desired.
Finally,

. 1—cosz . 2sin
lim ——— =1
z—0

X : X
7 . xosing)
im = lim { sin - - — =0
T z—0 T z—0 2

2
Theorem 5: Alternative definition of e*
For any =z € R,
. TN\™
e’ = lim (1 + —)
n— o0 n
where n € Z7.
Proof
First of all,
lim
n—o0

(1 + E) =1 = 1+ S0 for sufficiently large n
n n




By L’Hopital’s rule,

(142
. "’ o y 0
limIn{1+ — = lim ——=24 — form

Y—00 Yy Y—00 y_l 0
—1
T —Z
(1+—> Z
_ v) v _
= lim — =z
Yy—00 -y

By sequential criterion and continuity of e”,

lim <1 " f) — lim m(1+E)" — on
n

n—o0 n—oo
[
Theorem 6: First derivative test
Suppose ¢ € [a,b], f is continuous over [a,b] and f is differentiable, f' # 0 is continuous
over [a,b] \ {c}.
If ¢ € (a,b) is a critical point of f, then
(a) f' > 0 over (a,c) and f' < 0 over (c,b)
—> ¢ is a local maximum.
(b) f' <0 over (a,c) and f' > 0 over (c,b)
= ¢ is a local minimum.
(c) Otherwise
= cis neither a local maximum nor minimum.
If ¢ = a, then
(a) f' < 0 over (c,b)
= cis a local maximum.
(b) f' >0 over (c,b)
=—> ¢ is a local minimum.
If ¢ = b, then
(a) f' > 0 over (a,c)
—> ¢ is a local maximum.
(b) f' < 0 over (a,c)
= ¢ is a local minimum.

Proof

¢ € (a,b) is a critical point of f
If f/> 0 over (a,c) and f" < 0 over (¢, b), then, by MVT,

we@odde o, 1T pws0 = 50> 50
we eo.3ie ey T <o — 0> 1)

Thus, f(c) is the maximum over (a, b).

The argument for local minimum is similar.



If f/ > 0 over (a,c)U(c,b), then, similarly,

Vo € (a,c),y € (¢,b), f(z) < flc) < f(y)

Then, c is neither local max nor min. If f' < 0 over (a,c) U (¢, b), then, ¢ is neither local
max nor min for a similar reason.

Otherwise, for some x,y € (a,c) or x,y € (¢, b),
() >0, f'(y) <0 = f'(2) =0 for some z € (a,c) U (c,b)

by IVT, which contradicts with our assumption.

o

=a

f f/ <0 over (c,b), then, by MVT,

—

Vy € (c,b),3d € (c,y),

Thus, f(c) is the maximum over [a, b).
The argument for local minimum is similar.

Otherwise, for some z,y € (c,b),
f'(x)>0,f(y) <0 = f'(2) =0 for some z € (c,b)

by IVT, which contradicts with our assumption.
c=b

Let g(x) = f(a + b — x). Then, g satisfies the premises over [a,b] and g(a) = f(b).
"> 0over (a,b) = ¢ <0 over (a,b) = g(a) maximum = f(b) maximum

" <0over (a,b) = ¢ > 0over (a,b) = g(a) minimum = f(b) minimum

Theorem 7: Second derivative test
Suppose f(x) is differentiable around ¢, twice-differentiable at ¢ and f’(c) = 0. Then,

(a) f"(e) <0
—> ¢ is a local maximum.
(b) f"(e) >0
= ¢ is a local minimum.
Proof
f"(c) <0
Assume the contrary:
n 1 1
VneZ ", dz, € lc——c+—), fla,) > f(o)
n n



WLOG, say, z,, is an increasing sequence with lim x,, = c¢. Then,
n—oo

T =10y S8 oy = p <o

lim
T—c™ r —C z—c~ T — C
! L ! L
— 36 > 0,Vx € (¢—9,¢), /(=) —L’ < u = f'(z) < L+u <0 = fl(z)>0
r—c 2 r—c 2
WLOG, we may assume f is differentiable over [c — §, ¢]. By MVT,
IneZt, x,€(c—0d,c) = 3IdeE (x,,c), flan) = 1le) _ f'(d) <0

Ty —C
But
de(c—6b,c) = 0< f(d)<0
which is impossible.

f"(c) >0

By considering — f. u

Proposition 3: Alternative definition of concavity
If f is differentiable over an interval I, then

f is concave up (down) <= [’ is increasing (decreasing)

Proof

—

For any x1,z9 € I such that x; < xo, for all n € ZT, let

] 1 +1
n = —— |z —
4 2n TTop™?

Then, y, € (x1,x2) is a decreasing sequence with lim y, = x;. Since f is concave up over
n—oo

[xla'rZ])

Flom) = far) _ (1= 0) Fto0 + st~ ) e — (@)
bomm T (1_i)x1+ix2_x1 e

2n 2n
By taking n — oo, we have

f’(xl) _ Rf’(xl) — lim f (Yn) — f(21) < f(x2) — f(z1)

n—00 Yn — T1 To — I

On the other hand, let



Then, z, € (x1,23) is an increasing sequence with le Zp = Ta.
n o0

F) = fa) g o0+ (1 55) 102~ 1Ga _ flaw) — o)
Zn — X9 - 1 1 Ty — T
%xl—l— (1—%> To9 — To

By taking n — oo, we have

F(2) = L (3) = Tim LGn) = S(2)

n—r00 Zn — X9 To — X1

Hence, f'(x1) < f'(xq).
—

Given x1,z9 € I such that x; < o, let

F(t) = (1 =1)f(z1) +tf(z2) = f((1 = )z1 + ta2)
where ¢ € [0, 1]. Tt suffices to show Vt € [0,1], F(¢t) > 0.
First of all, F(0) = F(1) = 0. Also, F is differentiable over [0, 1] with
F'(t) = f(x2) = fz1) = (22 = 22) f(((1 = t)ay + tan)
= (z2 — 1) <M — (1 =t)zy + tx2)>

To — T

So, F' is a decreasing function.
Assume 3ty € (0,1), F(to) <0. Then, by MVT,

F(ty) — F(0
e (0.4, 0> =FO) g
to—0
F(1)—F(t
3ty € (tg,1), 0< (1) = Ftto) _ F'(ty)
11—t
Thus, F'(t1) < 0 < F'(t3), which is a contradiction.
The statement about concave down can be proved by considering — f. 0

Proposition 4
Suppose ¢ € (a,b), f is continuous over (a,b) and differentiable over (a,b) \ {c}. If cis a
point of inflection of f, then one of the followings holds:

(a) f"(c) =0,
(b) f is not twice differentiable at c.

Proof



Suppose f is twice differentiable at c. Since c is a point of inflection of f, for some € > 0,
say, f is concave up on (¢ — €, ¢) and concave down on (¢, c+¢€). Then, f’ is increasing on
(¢ — €, ¢) and decreasing on (¢, c+ ¢€). Given x € (¢ — €, ¢),

1 1
Tpn=(1—=)c+—-z€(c—¢c)
n

n

defines an increasing sequence that approaches c. Since f is increasing on (c—¢, c), f'(z,)
is an increasing sequence. Since f’ is continuous at c,

lim f'(zn) = f'(c) = f'(z) = f'(z1) < f'(c)

n—oo

In other words, f’ is indeed increasing on (¢ — ¢, ¢]. By similar arguments, f’ is decreasing
on [¢,c+ €). Hence,

¢ is a local maximum of f' = ¢ is a critical point of f* = f"(¢) =0

10



