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Appendix 3: Natural Exponential Function

3.1 Extended real number system

Definition 1

with arithmetic operations:
For any a € R,

a+00=00+a=00

o0+ 00 =0

The extended real number system, denoted by R, is given by

R=RU{—00,0}

o0 ifa>0
00-a=a-00=

—o0 ifa<0
00 - (—00) = (—00) - 00 = —00

-0 ifa>0
00 ifa<0

n—0o0 n—oo

a—00=—-00+a=—00
00 — 00 = —00 oo Joo ita>0
a |—oo ifa<0
00 —a = 00
—o0 J—oo ifa>0
a |0 ita<0
a a
_—=— = O
00 —00
and order —oo < a < 00.
Theorem 1: Sequential criterion for continuity (extended)
For any function f(r) with domain, codomain C R and a € Dy,
f(z) is continuous at a <=
V(an)nez+ such that a, € R and lim a, =a, lim f(a,) = f(a)

Proof

Let L = f(a) € R.




<

By the sequential criterion of limits.
—

The case when a, L € R were handled before. The cases when a = oo follow directly
from sequential criterion on limits.

When a € R, L = oo, given (a,,)nez+ such that a, € R and lim a, = a, for all M € R,

n—oo

f continuous at @ = 3§ > 0,Vz such that 0 < |z —a| <, f(x)>M

f(a) =L =00 = Vaxsuch that |z —a| <0, f(z)>M

Since lim a,, = a, we have

n—00
AN € ZT,Yn> N, la,—a|<d = fla,) > M
Hence, lim f(a,) = oo = f(a). The proof when a € R, L = —o0 is similar. ]
n—o0

Proposition 1

(a) Suppose f, g are functions with domains, codomains C R. If f is continuous at a and
g is continuous at f(a), then g o f is continuous at a.

(b) Constant functions and f(z) = cz, where ¢ € R, ¢ # 0, are continuous over R.

(¢) g(x) = — is continuous at co.
x

Proof

(a) Given a sequence (an)pez+ such that a, € Rand lim a, = a, by the sequential
n—oo

criterion of continuity,

lim b, = lim f(a,) = f(a) =10

n—oo n—0o0

If b, € R for sufficiently large n, then we also have

lim g<bn) = g(b)

n—o0

Hence,

lim (g o f)(a,) = lim g(b,) = g(b) = (go f)(a) = go f is continuous at a

n—o0 n—o0

Otherwise, there exists subsequence (b, )rez+ such that b,, = £oo. Notice that

beER = Ve>0,IN € Z",Yn> N, |b,—b| <e (contradiction)



Thus, b = +00. Suppose b = oo. Since lim b, = b, b, # —oo for sufficiently large n.

n—0o0

By continuity of g at b, for sufficiently large n,

g(b) if b, = o0

9(f{an)) = {g(bn) —g(b) ifb, €R

Hence, lim (g o f)(a,) = g(b) = (go f)(a) and g o f is continuous at a. The proof
n—oo

when b = —o0o is similar.

(b) Let g(x) be a constant function, which is continuous over R.
Ve >0, take N =1,Vz > N, |g(x)—g(o0)|=0<c¢

So, lim g(z) = g(o0) and ¢ is continuous at co. Similarly, ¢ is also continuous at —oo
T—r00

Let f(x) = cx, which is continuous over R. Suppose ¢ > 0.
M
VM e R, take N = — Vo >N, f(x)=cx>cN=M
c

So, lim f(x) =00 = f(0c0) and f is continuous at oo. Similarly, f is also continuous
T—>00

at —oo. The arguments when ¢ < 0 are also similar.

1 1 1
Ve >0,take N = ~,Vo > N, x>- = |g(z) —g(oco)] =~ < ¢
€ € T

3.2 Natural exponential function

Definition 2
The natural exponential function, denoted by e”, is defined by

.1?2 .753
= +Zk| — 14+ Tttt

and e =0, e® = 0.

Theorem 2

The natural exponential function is well-defined for any € R. Moreover,

=1, (VzeR, e €R) and (VzeR', " >1)

Proof

(In fact, convergence can be proved easily by ratio test)

Clearly, ¢’ = 1 and we may assume = € R.



When z > 0, let
x
m=1tD

Then, (a,),ez+ is an increasing sequence. Let m = |x] + 1.

Vn > m,
<L m? m"
an = +1|+?+ +W
mm mm+1 mn
= 144t do
1! m!  (m+1)! n!
S TN PIL V m TRt m
B 1! m! m! \m+1 (m+2)(m+1) nn—1)---(m+1)
< 1+ 24+ )+ B ) where r = ——
1! m! m! m+ 1
< (142 ) T
- 1! ! m! 1—r

exists in R. Moreover, e* > a; =1+z > 1.

When z < 0, let

2k‘+1 372 SC3 xQn x2n+1
1 1
(I+z +Z( 2k 1 1) ) ( ”H(zv + 3!)+ +((2n)! + (2n+1)!)

Let m = [|z|] + 1. Sincen >m = 2n+1>2m + 1 > 2|z| and

.2?2” N :L.2n+1 _ .232" ) N T - ‘:L,Pn ) _1 -
@n)! T @n+ 1)l (2n) om+1)” (2n) 2

as long as n > m, the sequence (b, ),ez+ is increasing for sufficiently large n. Furthermore,

’2]6

|| 2+ o
< (1+ |z]) +Z ) <€

Hence, by monotone convergence theorem,

2k+1
J%1”+Z< D))

exists in R. O




Proposition 2

For all z,y € R where z + y is well-defined,

evTY = % . ¥

Proof

The cases when x = O ory =0, x = y = oo and z = y = —oo are trivial. Suppose
xz,y € R.

When x,y > 0, let

n gjk
an(z) = Zﬁ
k=0

nok
Yy
bn(y) = E
k=0
- a:—i—yk
laty) = SO
k=0 ’

o 1
For 0 < i,j < n, the coefficient of 2'y’ in a,(z)b,(y) is ==+ On the other hand,
ily!

n

Y
co(r+y) = Z%

k=0

~(C6 x  CF ko Ck
= ;(gx + oy

=0

That means if 0 < i+ j = k < n, then the coefficient of z'y’ in ¢,(x + y) is
cr ok 1
KU ail(k—a)k! )
Thus,
cn( +y) < an(2)bn(y) < con(z +y)
By squeeze theorem,

e’ - e¥ = lim a,(2)b,(y) = lim c,(z +y) ="V
n—oo n—o0

When x < 0 or y < 0, terms still agree. So,
N el ] K 1 =" 1yl ly|"
an(@)ouly) = el t o)l < ot S (G ) T
= an(|z))ba(lyl) — ca(lz| + [yl)

By squeeze theorem,

lim |a,(2)b,(y) — co(z +y)| =0 = " =" - Y

n—oo



In particular, if £ > 0, then

1
l=e’=e""=¢"- " = e_xze—wE(O,l)

So,
VyeR, e W =e®=0c0=o00-¢"=¢e>-¢
VyeR, e W= =0=0-e=e">. ¢

and we are done.

Proposition 3

Vr €R, "€ (0,00) and e is strictly increasing over R

Proof

By Theorem 2, e® = 1 and e® € (1,00) if z € RT. Also, as in the proof of Proposition 2,
e € (0,1) if —z € R*. Therefore,
VeeR, €€ (0,00)
Moreover, for all z € R,
e =0<e"<o0=e"
Finally, whenever z,y € R such that z > y,

e = (@YY — Ty oY 5 oY

OJ
Proposition 4
f(z) = e” is continuous over R, differentiable over R with f'(z) = f(x).
Proof
For all z € R,
_ h _

A e o0 B A CO (hm e 1)

h—0 h h—0 h
In addition, whenever |h| < 1,

eh —1 | h+h2+h3+
h o2t 34l
1 1 1
< |hl-l=4+ =+ —4...|=|n
< |h| st TE Tt ‘ ||
By squeeze theorem, f is differentiable at x and
B) —
h—0 h
Thus, f is continuous over R. Finally, f is also continuous at +00 because
Ve e R, € >z = lim f(z) = lim " = co = f(c0)
T—>00 T—>00
n N 1 1 ) L 1
VyeR", 0<e?V=—<- = lim f(z)=Ilme ¥ =1lim —=0= f(—00)
eY Yy T—r—00 Y—>00 y—oo Y 0



3.3 Exponential and logarithmic functions

Proposition 5
f: R — [0, 00] such that f(x) = e” is bijective. Moreover, f~! is continuous over [0, oc],

1
differentiable over (0, 00) with (f~!)(x) = —.
T

Proof
Given y € (0,00), since f is continuous at —oo,

lim f(z)=0 = 3IN, eRVz < Ny, |f(2)|<? = f(N1—1)<%

T——00 2

Similarly, since f is continuous at oo,

lim f(z) =00 = IN; e RV >Ny, f(z)>y+1 = f(Na+1)>y+1
T—00

Notice that % <y<y+1land Ny —1 < Ny + 1 because f is strictly increasing. As f
is continuous over R, by IVT, there exists © € (N; — 1, Ny + 1) such that f(z) =y. So,
f(]R) = (07 OO)

Since f is differentiable and f/(x) = e* > 0 over R, its inverse f~! exists and is differen-
tiable over f(R) = (0, 00). Furthermore,

() = - -2

Naturally, we define
f7H0)=—c0 and  f7'(o0) =00

Given M € R, take 6 = e™ > 0. Then
Vrsuch that 0 <z < 4§, z<d=f(M) = fz)<M

So,
lim f~!(z) = —oco = f71(0)

z—0t

Given M € R, take N = e™. Then
V>N, o>N=fM) = fz)>M

So,
lim f~1(z) = 00 = f~(x)

T—r00

Hence, f is continuous over R. U

Definition 3
f71:]0,00] — R, denoted by f~!(z) = Inz, is the inverse function of f(z) = €.
For any a € R* and a # 1,

a® = ™%  with domain R

log, x = 27 With domain [0, o]
Ina




Proposition 6: Basic properties
For any a € RT and a # 1, z,y € R,

a*=a"-a’, a"V=—, a"=(a")¥
For any a € RT and a # 1, z,y € R,
log,(zy) = log, x +log,y, log, <£) =log,z —log,y, log,(z") =ylog,x
Yy

Moreover, for any a € R™ and a # 1, a* with domain R and log, z with domain R* are
inverse to each other.

Proof
For any a € RT and a # 1, 2,y € R,

Tty _ 6(:ery)lnoL _ yzlna eylna —

a e -a¥

al‘

a® = a@ M — g% Y. ¥ and ¥ = e¥YIe ¢ (0,00) = a* ¥ = —
a

zlna)

x
(aac)y — eyln(a ) — eyln(e — ey(:plna) — g

For the properties about log,, it suffices to prove them with a = e. For any z,y € R™,

elnethny — ghhe ooy — 4 — Ina 4+ Iny = In(zy)
elnm T T
ey — — =~ — Inz—Iny=1In(">
elny Yy Y
eV = v — ylnx = In(2Y)
For any a € R™ and a # 1, z € R,

Ina® zlna

T zlna + T
= eR d 1 — —
a e an og,(a®) na na

Vr € RT,

log, z = _lnx ER and @l%%a® = (0B 2)(Ine) — gz _ o
na



