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Appendix 3: Natural Exponential Function

3.1 Extended real number system

Definition 1

The extended real number system, denoted by R, is given by

R = R ∪ {−∞,∞}

with arithmetic operations:
For any a ∈ R,

a+∞ =∞+ a =∞

∞+∞ =∞

a−∞ = −∞+ a = −∞

−∞−∞ = −∞

∞− a =∞

∞ ·∞ = (−∞) · (−∞) =∞

∞ · a = a · ∞ =

{
∞ if a > 0

−∞ if a < 0

∞ · (−∞) = (−∞) · ∞ = −∞

(−∞) · a = a · (−∞) =

{
−∞ if a > 0

∞ if a < 0

∞
a

=

{
∞ if a > 0

−∞ if a < 0

−∞
a

=

{
−∞ if a > 0

∞ if a < 0

a

∞
=

a

−∞
= 0

and order −∞ < a <∞.

Theorem 1: Sequential criterion for continuity (extended)

For any function f(x) with domain, codomain ⊆ R and a ∈ Df ,

f(x) is continuous at a ⇐⇒

∀(an)n∈Z+ such that an ∈ R and lim
n→∞

an = a, lim
n→∞

f(an) = f(a)

Proof

Let L = f(a) ∈ R.
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⇐=

By the sequential criterion of limits.

=⇒
The case when a, L ∈ R were handled before. The cases when a = ±∞ follow directly
from sequential criterion on limits.

When a ∈ R, L =∞, given (an)n∈Z+ such that an ∈ R and lim
n→∞

an = a, for all M ∈ R,

f continuous at a =⇒ ∃δ > 0,∀x such that 0 < |x− a| < δ, f(x) > M

f(a) = L =∞ =⇒ ∀x such that |x− a| < δ, f(x) > M

Since lim
n→∞

an = a, we have

∃N ∈ Z+, ∀n > N, |an − a| < δ =⇒ f(an) > M

Hence, lim
n→∞

f(an) =∞ = f(a). The proof when a ∈ R, L = −∞ is similar. �

Proposition 1

(a) Suppose f, g are functions with domains, codomains ⊆ R. If f is continuous at a and
g is continuous at f(a), then g ◦ f is continuous at a.

(b) Constant functions and f(x) = cx, where c ∈ R, c 6= 0, are continuous over R.

(c) g(x) =
1

x
is continuous at ∞.

Proof

(a) Given a sequence (an)n∈Z+ such that an ∈ R and lim
n→∞

an = a, by the sequential

criterion of continuity,

lim
n→∞

bn = lim
n→∞

f(an) = f(a) = b

If bn ∈ R for sufficiently large n, then we also have

lim
n→∞

g(bn) = g(b)

Hence,

lim
n→∞

(g ◦ f)(an) = lim
n→∞

g(bn) = g(b) = (g ◦ f)(a) =⇒ g ◦ f is continuous at a

Otherwise, there exists subsequence (bnk
)k∈Z+ such that bnk

= ±∞. Notice that

b ∈ R =⇒ ∀ε > 0, ∃N ∈ Z+,∀n > N, |bn − b| < ε (contradiction)
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Thus, b = ±∞. Suppose b =∞. Since lim
n→∞

bn = b, bn 6= −∞ for sufficiently large n.

By continuity of g at b, for sufficiently large n,

g(f(an)) =

{
g(b) if bn =∞
g(bn)→ g(b) if bn ∈ R

Hence, lim
n→∞

(g ◦ f)(an) = g(b) = (g ◦ f)(a) and g ◦ f is continuous at a. The proof

when b = −∞ is similar.

(b) Let g(x) be a constant function, which is continuous over R.

∀ε > 0, take N = 1,∀x > N, |g(x)− g(∞)| = 0 < ε

So, lim
x→∞

g(x) = g(∞) and g is continuous at∞. Similarly, g is also continuous at −∞

Let f(x) = cx, which is continuous over R. Suppose c > 0.

∀M ∈ R, take N =
M

c
,∀x > N, f(x) = cx > cN = M

So, lim
x→∞

f(x) =∞ = f(∞) and f is continuous at ∞. Similarly, f is also continuous

at −∞. The arguments when c < 0 are also similar.

(c)

∀ε > 0, take N =
1

ε
,∀x > N, x >

1

ε
=⇒ |g(x)− g(∞)| = 1

x
< ε

�

3.2 Natural exponential function

Definition 2
The natural exponential function, denoted by ex, is defined by

ex = 1 +
∞∑
k=1

xk

k!
= 1 +

x

1!
+
x2

2!
+
x3

3!
+ · · ·

and e−∞ = 0, e∞ =∞.

Theorem 2

The natural exponential function is well-defined for any x ∈ R. Moreover,

e0 = 1, (∀x ∈ R, ex ∈ R) and (∀x ∈ R+, ex > 1)

Proof

(In fact, convergence can be proved easily by ratio test)

Clearly, e0 = 1 and we may assume x ∈ R.
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When x > 0, let

an = 1 +
n∑

k=1

xk

k!

Then, (an)n∈Z+ is an increasing sequence. Let m = bxc+ 1.

∀n > m,

an ≤ 1 +
m

1!
+
m2

2!
+ · · ·+ mn

n!

= 1 +
m

1!
+ · · ·+ mm

m!
+

mm+1

(m+ 1)!
+ · · ·+ mn

n!

=

(
1 +

m

1!
+ · · ·+ mm

m!

)
+
mm

m!

(
m

m+ 1
+

m2

(m+ 2)(m+ 1)
+ · · ·+ mn−m

n(n− 1) · · · (m+ 1)

)
≤

(
1 +

m

1!
+ · · ·+ mm

m!

)
+
mm

m!

(
r + r2 + · · ·+ rn−m

)
where r =

m

m+ 1

≤
(

1 +
m

1!
+ · · ·+ mm

m!

)
+
mm

m!
· r

1− r

Therefore, an is bounded above for sufficiently large n. By monotone convergence theorem,

ex = lim
n→∞

(
1 +

n∑
k=1

xk

k!

)
= lim

n→∞
an

exists in R. Moreover, ex ≥ a1 = 1 + x > 1.

When x < 0, let

bn = (1+x)+
n∑

k=1

(
x2k

(2k)!
+

x2k+1

(2k + 1)!

)
= (1+x)+

(
x2

2!
+
x3

3!

)
+· · ·+

(
x2n

(2n)!
+

x2n+1

(2n+ 1)!

)
Let m = b|x|c+ 1. Since n > m =⇒ 2n+ 1 > 2m+ 1 > 2|x| and

x2n

(2n)!
+

x2n+1

(2n+ 1)!
=

x2n

(2n)!

(
1 +

x

2n+ 1

)
>
|x|2n

(2n)!

(
1− 1

2

)
> 0

as long as n > m, the sequence (bn)n∈Z+ is increasing for sufficiently large n. Furthermore,

bn ≤ (1 + |x|) +
n∑

k=1

(
|x|2k

(2k)!
+
|x|2k+1

(2k + 1)!

)
≤ e|x|

Hence, by monotone convergence theorem,

ex = lim
n→∞

(
(1 + x) +

n∑
k=1

(
x2k

(2k)!
+

x2k+1

(2k + 1)!

))
= lim

n→∞
bn

exists in R. �
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Proposition 2

For all x, y ∈ R where x+ y is well-defined,

ex+y = ex · ey

Proof

The cases when x = 0 or y = 0, x = y = ∞ and x = y = −∞ are trivial. Suppose
x, y ∈ R.

When x, y > 0, let

an(x) =
n∑

k=0

xk

k!

bn(y) =
n∑

k=0

yk

k!

cn(x+ y) =
n∑

k=0

(x+ y)k

k!

For 0 ≤ i, j ≤ n, the coefficient of xiyj in an(x)bn(y) is
1

i!j!
. On the other hand,

cn(x+ y) =
n∑

k=0

(x+ y)k

k!

=
n∑

k=0

(
Ck

0

k!
xk +

Ck
1

k!
xk−1y + · · ·+ Ck

k

k!
yk
)

That means if 0 ≤ i+ j = k ≤ n, then the coefficient of xiyj in cn(x+ y) is

Ck
i

k!
=

k!

i!(k − i)!k!
=

1

i!j!

Thus,
cn(x+ y) ≤ an(x)bn(y) ≤ c2n(x+ y)

By squeeze theorem,

ex · ey = lim
n→∞

an(x)bn(y) = lim
n→∞

cn(x+ y) = ex+y

When x < 0 or y < 0, terms still agree. So,

|an(x)bn(y)− cn(x+ y)| ≤ |x|
1!

|y|n

n!
+
|x|2

2!

(
|y|n−1

(n− 1)!
+
|y|n

n!

)
+ · · ·+ |x|

n

n!

(
|y|
1!

+ · · ·+ |y|
n

n!

)
= an(|x|)bn(|y|)− cn(|x|+ |y|)

By squeeze theorem,

lim
n→∞

|an(x)bn(y)− cn(x+ y)| = 0 =⇒ ex+y = ex · ey
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In particular, if x > 0, then

1 = e0 = ex−x = ex · e−x =⇒ e−x =
1

ex
∈ (0, 1)

So,
∀y ∈ R, e∞+y = e∞ =∞ =∞ · ey = e∞ · ey

∀y ∈ R, e−∞+y = e−∞ = 0 = 0 · ey = e−∞ · ey

and we are done. �

Proposition 3

∀x ∈ R, ex ∈ (0,∞) and ex is strictly increasing over R

Proof

By Theorem 2, e0 = 1 and ex ∈ (1,∞) if x ∈ R+. Also, as in the proof of Proposition 2,
ex ∈ (0, 1) if −x ∈ R+. Therefore,

∀x ∈ R, ex ∈ (0,∞)

Moreover, for all x ∈ R,
e−∞ = 0 < ex <∞ = e∞

Finally, whenever x, y ∈ R such that x > y,

ex = e(x−y)+y = ex−y · ey > ey

�

Proposition 4

f(x) = ex is continuous over R, differentiable over R with f ′(x) = f(x).

Proof

For all x ∈ R,

lim
h→0

f(x+ h)− f(x)

h
= ex

(
lim
h→0

eh − 1

h

)
In addition, whenever |h| < 1,∣∣∣∣eh − 1

h
− 1

∣∣∣∣ =

∣∣∣∣ h2!
+
h2

3!
+
h3

4!
+ · · ·

∣∣∣∣
≤ |h| ·

∣∣∣∣12 +
1

22
+

1

23
+ · · ·

∣∣∣∣ = |h|

By squeeze theorem, f is differentiable at x and

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= ex(1) = f(x)

Thus, f is continuous over R. Finally, f is also continuous at ±∞ because

∀x ∈ R+, ex ≥ x =⇒ lim
x→∞

f(x) = lim
x→∞

ex =∞ = f(∞)

∀y ∈ R+, 0 < e−y =
1

ey
<

1

y
=⇒ lim

x→−∞
f(x) = lim

y→∞
e−y = lim

y→∞

1

y
= 0 = f(−∞)

�
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3.3 Exponential and logarithmic functions

Proposition 5

f : R→ [0,∞] such that f(x) = ex is bijective. Moreover, f−1 is continuous over [0,∞],

differentiable over (0,∞) with (f−1)′(x) =
1

x
.

Proof

Given y ∈ (0,∞), since f is continuous at −∞,

lim
x→−∞

f(x) = 0 =⇒ ∃N1 ∈ R,∀x < N1, |f(x)| < y

2
=⇒ f(N1 − 1) <

y

2

Similarly, since f is continuous at ∞,

lim
x→∞

f(x) =∞ =⇒ ∃N2 ∈ R,∀x > N2, f(x) > y + 1 =⇒ f(N2 + 1) > y + 1

Notice that
y

2
< y < y + 1 and N1 − 1 < N2 + 1 because f is strictly increasing. As f

is continuous over R, by IVT, there exists x ∈ (N1 − 1, N2 + 1) such that f(x) = y. So,
f(R) = (0,∞).

Since f is differentiable and f ′(x) = ex > 0 over R, its inverse f−1 exists and is differen-
tiable over f(R) = (0,∞). Furthermore,

(f−1)′(x) =
1

f ′(f−1(x))
=

1

f(f−1(x))
=

1

x

Naturally, we define
f−1(0) = −∞ and f−1(∞) =∞

Given M ∈ R, take δ = eM > 0. Then

∀x such that 0 < x < δ, x < δ = f(M) =⇒ f−1(x) < M

So,
lim
x→0+

f−1(x) = −∞ = f−1(0)

Given M ∈ R, take N = eM . Then

∀x > N, x > N = f(M) =⇒ f−1(x) > M

So,
lim
x→∞

f−1(x) =∞ = f−1(∞)

Hence, f is continuous over R. �

Definition 3

f−1 : [0,∞]→ R, denoted by f−1(x) = lnx, is the inverse function of f(x) = ex.
For any a ∈ R+ and a 6= 1,

ax = ex ln a with domain R

loga x =
lnx

ln a
with domain [0,∞]
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Proposition 6: Basic properties
For any a ∈ R+ and a 6= 1, x, y ∈ R,

ax+y = ax · ay, ax−y =
ax

ay
, axy = (ax)y

For any a ∈ R+ and a 6= 1, x, y ∈ R+,

loga(xy) = loga x+ loga y, loga

(
x

y

)
= loga x− loga y, loga(x

y) = y loga x

Moreover, for any a ∈ R+ and a 6= 1, ax with domain R and loga x with domain R+ are
inverse to each other.

Proof

For any a ∈ R+ and a 6= 1, x, y ∈ R,

ax+y = e(x+y) ln a = ex ln a · ey ln a = ax · ay

ax = a(x−y)+y = ax−y · ay and ay = ey ln a ∈ (0,∞) =⇒ ax−y =
ax

ay

(ax)y = ey ln(a
x) = ey ln(e

x ln a) = ey(x ln a) = axy

For the properties about loga, it suffices to prove them with a = e. For any x, y ∈ R+,

elnx+ln y = elnx · eln y = xy =⇒ lnx+ ln y = ln(xy)

elnx−ln y =
elnx

eln y
=
x

y
=⇒ lnx− ln y = ln

(
x

y

)
ey lnx = xy =⇒ y lnx = ln(xy)

For any a ∈ R+ and a 6= 1, x ∈ R,

ax = ex ln a ∈ R+ and loga(a
x) =

ln ax

ln a
=
x ln a

ln a
= x

∀x ∈ R+,

loga x =
lnx

ln a
∈ R and aloga x = e(loga x)(ln a) = elnx = x

�
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