THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1510 Calculus for Engineers by Dr. Liu Chun Lung (Kelvin)

Appendix 2: Continuity and Differentiability

2.1 Continuity

Theorem 1: Sequential criterion for continuity

For any function f(x) and $a \in D_f$,

f(x) is continuous at $a \iff \forall (a_n)_{n \in \mathbb{Z}^+}$ such that $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} f(a_n) = f(a)$

Proof

 \implies

Given $(a_n)_{n\in\mathbb{Z}^+}$ such that $\lim_{n\to\infty} a_n = a$, for all $\epsilon > 0$,

f continuous at $a \implies \exists \delta > 0, \forall x$ such that $0 < |x - a| < \delta, \quad |f(x) - f(a)| < \epsilon$

In fact,

$$a \in D_f \implies \forall x \text{ such that } |x-a| < \delta, \quad |f(x) - f(a)| < \epsilon$$

Since $\lim_{n \to \infty} a_n = a$, we have

$$\exists N \in \mathbb{Z}^+, \forall n > N, \quad |a_n - a| < \delta \implies |f(a_n) - f(a)| < \epsilon$$

Hence, $\lim_{n \to \infty} f(a_n) = f(a).$

From the given condition,

$$\forall (a_n)_{n \in \mathbb{Z}^+}$$
 such that $a_n \neq a$ and $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} f(a_n) = f(a)$

By the sequential criterion of limits, we conclude that

$$\lim_{x \to a} f(x) = f(a),$$

which means f is continuous at a.

Proposition 1

(a) If f, g are continuous at a, then $f \pm g, f \cdot g$ and $\frac{f}{g}$ (if $g(a) \neq 0$) are all continuous at a

(b) If f is continuous at a and g is continuous at f(a), then $g \circ f$ is continuous at a

(c) Constant functions and f(x) = x are continuous over \mathbb{R} .

Proof

(a) Since f, g are continuous at a, we have

$$\lim_{x \to a} f(x) = f(a) \quad \text{and} \quad \lim_{x \to a} g(x) = g(a)$$

Therefore,

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right) + \left(\lim_{x \to a} g(x)\right) = f(a) + g(a) \implies f + g \text{ is continuous at } a$$

The proofs for the other operations are similar.

(b) Given a sequence $(a_n)_{n \in Z^+}$ such that $\lim_{n \to \infty} a_n = a$, by the sequential criterion of continuity,

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} f(a_n) = f(a) = b$$

Similarly, by consider the sequence $(b_n)_{n \in Z^+}$ that approaches b, we also have

$$\lim_{n \to \infty} g(b_n) = g(b)$$

Hence,

$$\lim_{n \to \infty} (g \circ f)(a_n) = \lim_{n \to \infty} g(b_n) = g(b) = (g \circ f)(a) \implies g \circ f \text{ is continuous at } a$$

(c) Let g(x) be a constant function. Given $a \in \mathbb{R}$,

$$\forall \epsilon > 0$$
, take $\delta = 1, \forall x$ such that $0 < |x - a| < \delta$, $|g(x) - g(a)| = 0 < \epsilon$

So, $\lim_{x \to a} g(x) = g(a)$ and g is continuous at a.

Let f(x) = x. Given $a \in \mathbb{R}$,

 $\forall \epsilon > 0, \text{ take } \delta = \epsilon, \forall x \text{ such that } 0 < |x - a| < \delta, \quad |f(x) - f(a)| = |x - a| < \epsilon$

So, $\lim_{x \to a} f(x) = f(a)$ and f is continuous at a.

Theorem 2: Extreme Value Theorem (EVT)

Suppose f is continuous on [a, b]. Then, f attains its maximum and minimum, i.e., there exist $c, d \in [a, b]$

 $f(c) \le f(x) \le f(d)$

for all $x \in [a, b]$.

<u>Proof</u>

Let $M = \sup \{ f(x) \mid x \in [a, b] \}$. Then, $\forall x \in [a, b], \quad f(x) \le M$. Assume f doesn't attain M.

$$\forall n \in \mathbb{Z}^+, \exists x_n \in [a, b], \quad |f(x_n) - M| < \frac{1}{n}$$

_			_	
г				
L	_	_		

Since [a, b] is closed and bounded, by Bolzano-Weierstrass theorem, $(x_n)_{n \in \mathbb{Z}^+}$ has a subsequence $(x_{n_k})_{k \in \mathbb{Z}^+}$ such that

$$\lim_{k \to \infty} x_{n_k} = x_0$$

for some $x_0 \in [a, b]$. By squeeze theorem and continuity,

$$\lim_{k \to \infty} |f(x_{n_k}) - M| = 0 \implies f(x_0) = \lim_{k \to \infty} f(x_{n_k}) = M$$

which contradicts with our assumption. Hence, f attains its maximum.

f also attains its minimum because -f attains its maximum.

Theorem 3: Intermediate Value Theorem (IVT)

If f is continuous on [a, b], then, for any $v \in [f(a), f(b)]$ (or [f(b), f(a)]),

$$f(c) = v$$
 for some $c \in [a, b]$.

Proof

The statement is trivial if v = f(a) or f(b). Otherwise, say, f(a) < v < f(b). By subtracting v, we may assume f(a) < 0, f(b) > 0 and v = 0.

Assume
$$\forall x \in [a, b], \quad f(x) \neq 0.$$

Let $a_0 = a, b_0 = b$ and $x_0 = \frac{a_0 + b_0}{2}$. Then, $f(x_0) \neq 0$. Let
 $(a_1, b_1) = \begin{cases} (a_0, x_0) & \text{if } f(x_0) > 0\\ (x_0, b_0) & \text{if } f(x_0) < 0 \end{cases}$

Either way, we have

$$f(a_1) < 0, \quad f(b_1) > 0, \quad |b_1 - a_1| = \frac{b - a}{2}$$

Similarly, we define $x_1 = \frac{a_1 + b_1}{2}$ and

$$(a_2, b_2) = \begin{cases} (a_1, x_1) & \text{if } f(x_1) > 0\\ (x_1, b_1) & \text{if } f(x_1) < 0 \end{cases}$$

Again, we have

$$f(a_2) < 0, \quad f(b_2) > 0, \quad |b_2 - a_2| = \frac{b_1 - a_1}{2} = \frac{b - a}{2^2}$$

In this manner, we construct an increasing sequence $(a_n)_{n\in\mathbb{Z}^+}$ and a decreasing sequence $(b_n)_{n\in\mathbb{Z}^+}$ such that

$$\forall n \in \mathbb{Z}^+, \quad a_n < b_n, \quad f(a_n) < 0, \quad f(b_n) > 0, \quad |b_n - a_n| = \frac{b - a}{2^n}$$

Since $a_n < b_n < b_1$ and $a_1 < a_n < b_n$ for all n, a_n is bounded above and b_n is bounded below. By Monotone convergence theorem,

$$\lim_{n \to \infty} a_n = \overline{a} \le \overline{b} = \lim_{n \to \infty} b_n$$

 $\frac{\text{Claim 1:} \quad \lim_{n \to \infty} \frac{1}{2^n} = 0}{\text{Given } \epsilon > 0, \text{ take } N = \left\lfloor \frac{1}{\epsilon} \right\rfloor + 1 \text{ ($\lfloor*$] is the round-down function). Then,}}$

$$\forall n > N, \quad n > \frac{1}{\epsilon} \implies 2^n > n > \frac{1}{\epsilon} \implies \left| \frac{1}{2^n} \right| < \epsilon \qquad \triangle$$

 $|b_n - a_n| = \frac{b-a}{2^n} \implies \lim_{n \to \infty} |b_n - a_n| = 0 \implies \overline{a} = \overline{b}$

By claim 1,

$$Z^{n} = \overline{L}$$

Notice that f is continuous at $\overline{a} = b$. Thus,

$$0 \ge \lim_{n \to \infty} f(a_n) = f(\overline{a}) = f(b) = \lim_{n \to \infty} f(b_n) \ge 0$$

Hence, $f(\overline{a}) = 0$, contradicting our assumption.

Theorem 4: Bolzano's Theorem

Suppose f is continuous on [a, b]. If f(a), f(b) have opposite signs, then

f(c) = 0 for some $c \in (a, b)$.

Proof

By putting v = 0 in IVT.

2.2 Differentiability

Proposition 2

f(x) is differentiable at $a \iff Lf'(a), Rf'(a)$ both exist and are equal

Proof

By the corresponding result about limits.

Theorem 5

f(x) is differentiable at $a \implies f(x)$ is continuous at a

Proof

Since g(x) = x - a is continuous over \mathbb{R} ,

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a) = f'(a)g(a) = 0 \implies \lim_{x \to a} f(x) = f(a)$$

Proposition 3

(a) If f, g are differentiable at a, then
f ± g, f ⋅ g and f/g (if g(a) ≠ 0) are all differentiable at a with

(f ± g)'(a) = f'(a) ± g'(a)

(f ⋅ g)'(a) = f'(a)g(a) + f(a)g'(a)
(f f/g)'(a) = f'(a)g(a) - f(a)g'(a)

(h) If f is differentiable at a and a is differentiable at f(a), then a o f is

(b) If f is differentiable at a and g is differentiable at f(a), then $g \circ f$ is differentiable at a with

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$

(c) $f(x) = c \in \mathbb{R}$ and g(x) = x are differentiable over \mathbb{R} with f'(x) = 0 and g'(x) = 1.

<u>Proof</u>

(a) By definition,

$$\lim_{x \to a} \frac{(f(x) \pm g(x)) - (f(a) \pm g(a))}{x - a} = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \pm \frac{g(x) - g(a)}{x - a} \right) = f'(a) \pm g'(a)$$

Notice that f, g are differentiable at a implies that f, g are continuous at a.

$$(f \cdot g)'(a) = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a}$$

=
$$\lim_{x \to a} \frac{f(x)g(x) - f(a)g(x) + f(a)g(x) - f(a)g(a)}{x - a}$$

=
$$\lim_{x \to a} \left(g(x)\frac{f(x) - f(a)}{x - a} + f(a)\frac{g(x) - g(a)}{x - a}\right)$$

=
$$g(a)f'(a) + f(a)g'(a)$$

$$\left(\frac{f}{g}\right)'(a) = \lim_{x \to a} \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a}$$

$$= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(x)}{(x - a)g(x)g(a)}$$

$$= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(a) + f(a)g(a) - f(a)g(x)}{(x - a)g(x)g(a)}$$

$$= \lim_{x \to a} \frac{1}{g(x)g(a)} \left(g(a)\frac{f(x) - f(a)}{x - a} - f(a)\frac{g(x) - g(a)}{x - a}\right)$$

$$= \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$

(b) Given $(x_n)_{n \in \mathbb{Z}^+}$ such that $x_n \neq a$ and $\lim_{n \to \infty} x_n = a$, let $y_n = f(x_n)$ and b = f(a). Since f is differentiable at a,

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} f(x_n) = f(a) = b$$
$$\lim_{n \to \infty} \frac{y_n - b}{x_n - a} = \lim_{n \to \infty} \frac{f(x_n) - f(a)}{x_n - a} = f'(a)$$

Assume that $y_n \neq b$ for sufficiently large n. Then,

$$\lim_{n \to \infty} \frac{g(f(x_n)) - g(f(a))}{x_n - a} = \lim_{n \to \infty} \frac{g(y_n) - g(b)}{y_n - b} \cdot \frac{y_n - b}{x_n - a} = g'(b)f'(a)$$

Otherwise, there exists a subsequence $(x_{n_k})_{k\in\mathbb{Z}^+}$ such that $y_{n_k} = b$ for all $k\in\mathbb{Z}^+$. In this case,

$$f'(a) = \lim_{k \to \infty} \frac{f(x_{n_k}) - f(a)}{x_{n_k} - a} = 0$$

Notice that

$$\frac{g(f(x_n)) - g(f(a))}{x_n - a} = \begin{cases} \frac{g(y_n) - g(b)}{x_n - a} = 0 & \text{if } y_n = b\\ \frac{g(y_n) - g(b)}{y_n - b} \cdot \frac{y_n - b}{x_n - a} \to g'(b)f'(a) = 0 & \text{if } y_n \neq b \end{cases}$$

That means

$$\forall \epsilon > 0, \exists N \in \mathbb{Z}^+, \forall n > N, \quad \left| \frac{g(f(x_n)) - g(f(a))}{x_n - a} \right| < \epsilon$$

Therefore,

$$\lim_{n \to \infty} \frac{g(f(x_n)) - g(f(a))}{x_n - a} = 0 = g'(b)f'(a)$$

Hence, by sequential criterion,

$$(g \circ f)'(a) = g'(b)f'(a) = g'(f(a)) \cdot f'(a)$$

(c) Given $a \in \mathbb{R}$, since constant functions are continuous,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} 0 = 0$$
$$g'(a) = \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = \lim_{x \to a} 1 = 1$$

Theorem 6: Rolle's Theorem

Suppose f(x) is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), then

$$f'(c) = 0$$
 for some $c \in (a, b)$.

Proof

If
$$\forall x \in (a, b)$$
, $f(x) = f(a)$, then we might take $c = \frac{a+b}{2}$:
$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = 0$$

Assume f(d) > f(a) for some $d \in (a, b)$. By EVT,

$$\exists c \in [a, b], \quad M = f(c) = \max \{ f(x) \mid x \in [a, b] \}$$
$$f(c) \ge f(d) > f(a) \implies c \in (a, b)$$
$$0 \ge \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} = Rf'(c) = Lf'(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \ge 0$$

Therefore, f'(c) = 0 as desired. The case when f(d) < f(a) for some $d \in (a, b)$ can be handled by considering -f(x).

Theorem 7: Mean Value Theorem (Lagrange)

Suppose f(x) is continuous on [a, b] and differentiable on (a, b). Then,

$$f'(c) = \frac{f(b) - f(a)}{b - a} \quad \text{for some } c \in (a, b).$$

Proof

Let

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$

Then, g(x) is continuous on [a, b] and differentiable on (a, b). Moreover,

$$g(a) = f(a) = f(b) - \frac{f(b) - f(a)}{b - a}(b - a) = g(b)$$

By Rolle's Theorem,

$$\exists c \in (a, b), \quad 0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$

and we are done.

Theorem 8

- (a) If f is continuous and strictly increasing (or strictly decreasing) over an open interval I, then f^{-1} exists and is continuous over f(I).
- (b) If f is differentiable and f' > 0 (or f' < 0) over an open interval I, then f^{-1} exists and is differentiable over f(I) with

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

Proof

(a) Suppose f is strictly increasing over I. By definition, f with codomain f(I) is surjective. Moreover,

$$x_1 \neq x_2 \implies x_1 < x_2 \text{ or } x_1 > x_2 \implies f(x_1) < f(x_2) \text{ or } f(x_1) > f(x_2) \implies f(x_1) \neq f(x_2)$$

So, f is also injective and thus, f^{-1} exists.

Given $b \in f(I)$, let $a = f^{-1}(b)$. For any strictly increasing sequence $(y_n)_{n \in \mathbb{Z}^+}$ such that $\lim_{n \to \infty} y_n = b$, we consider the sequence $x_n = f^{-1}(y_n)$.

$$x_n \ge a \implies y_n = f(x_n) \ge f(a) = b$$
 (contradiction)

So, $x_n < a$. By similar arguments, we can show that x_n is a strictly increasing sequence. By monotone convergence theorem,

$$\lim_{n \to \infty} x_n = a' \le a$$

Since f is continuous,

$$\lim_{n \to \infty} x_n = a' \implies \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} y_n = f(a') \implies f(a') = b \implies a' = a$$

In other words,

$$\lim_{n \to \infty} f^{-1}(y_n) = \lim_{n \to \infty} x_n = a = f^{-1}(b)$$

By sequential criterion, we can conclude that

$$\lim_{y \to b^{-}} f^{-1}(y) = f^{-1}(b)$$

By symmetry, we also have $\lim_{y\to b^+} f^{-1}(y) = f^{-1}(b)$. Hence, f^{-1} is continuous at any $b \in f(I)$.

If f is strictly decreasing, then -f is strictly increasing and $g(x) = (-f)^{-1}(-x)$ will be the inverse of f(x).

8

(b) Suppose f' > 0 over I. For any $x_1 < x_2$, f is differentiable over $[x_1, x_2]$. By MVT,

$$\exists c \in (x_1, x_2), \quad \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) > 0 \implies f(x_2) > f(x_1)$$

So, f is strictly increasing over I. By part (a), f^{-1} exists and is continuous over f(I). Given $b \in f(I)$, let $a = f^{-1}(b)$. For any sequence $(y_n)_{n \in \mathbb{Z}^+}$ such that $y_n \neq b$ and $\lim_{n \to \infty} y_n = b$, we consider the sequence $x_n = f^{-1}(y_n)$. Then, $x_n \neq a$. Since f^{-1} is continuous,

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} f^{-1}(y_n) = f^{-1}(b) = a$$

Therefore,

$$\lim_{n \to \infty} \frac{f^{-1}(y_n) - f^{-1}(b)}{y_n - b} = \lim_{n \to \infty} \frac{x_n - a}{f(x_n) - f(a)}$$
$$= \frac{1}{\lim_{n \to \infty} \frac{f(x_n) - f(a)}{x_n - a}}$$
$$= \frac{1}{f'(a)} \quad (f'(a) \neq 0)$$

By sequential criterion,

$$(f^{-1})'(b) = \lim_{y \to b} \frac{f^{-1}(y) - f^{-1}(b)}{y - b} = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$$