THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1510 Calculus for Engineers by Dr. Liu Chun Lung (Kelvin)

Appendix 2: Continuity and Differentiability

2.1 Continuity

Theorem 1: Sequential criterion for continuity

For any function $f(x)$ and $a \in D_f$,

 $f(x)$ is continuous at $a \iff \forall (a_n)_{n \in \mathbb{Z}^+}$ such that $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} f(a_n) = f(a)$

Proof

=⇒

Given $(a_n)_{n \in \mathbb{Z}^+}$ such that $\lim_{n \to \infty} a_n = a$, for all $\epsilon > 0$,

f continuous at $a \implies \exists \delta > 0, \forall x$ such that $0 < |x - a| < \delta$, $|f(x) - f(a)| < \epsilon$

In fact,

$$
a \in D_f \implies \forall x
$$
 such that $|x - a| < \delta$, $|f(x) - f(a)| < \epsilon$

Since $\lim_{n\to\infty} a_n = a$, we have

$$
\exists N \in \mathbb{Z}^+, \forall n > N, \quad |a_n - a| < \delta \implies |f(a_n) - f(a)| < \epsilon
$$

Hence, $\lim_{n\to\infty} f(a_n) = f(a)$. \leftarrow

From the given condition,

$$
\forall (a_n)_{n \in \mathbb{Z}^+} \text{ such that } a_n \neq a \text{ and } \lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} f(a_n) = f(a)
$$

By the sequential criterion of limits, we conclude that

$$
\lim_{x \to a} f(x) = f(a),
$$

which means f is continuous at a. \Box

Proposition 1

- (a) If f, g are continuous at a , then $f \pm g$, $f \cdot g$ and $\frac{f}{f}$ g $(f \circ g(a) \neq 0)$ are all continuous at a (b) If f is continuous at a and g is continuous at $f(a)$, then $g \circ f$ is continuous at a
- (c) Constant functions and $f(x) = x$ are continuous over R.

Proof

(a) Since f, g are continuous at a , we have

$$
\lim_{x \to a} f(x) = f(a) \quad \text{and} \quad \lim_{x \to a} g(x) = g(a)
$$

Therefore,

$$
\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right) + \left(\lim_{x \to a} g(x)\right) = f(a) + g(a) \implies f + g
$$
 is continuous at a

The proofs for the other operations are similar.

(b) Given a sequence $(a_n)_{n \in \mathbb{Z}^+}$ such that $\lim_{n \to \infty} a_n = a$, by the sequential criterion of continuity,

$$
\lim_{n \to \infty} b_n = \lim_{n \to \infty} f(a_n) = f(a) = b
$$

Similarly, by consider the sequence $(b_n)_{n\in\mathbb{Z}^+}$ that approaches b, we also have

$$
\lim_{n \to \infty} g(b_n) = g(b)
$$

Hence,

$$
\lim_{n \to \infty} (g \circ f)(a_n) = \lim_{n \to \infty} g(b_n) = g(b) = (g \circ f)(a) \implies g \circ f
$$
 is continuous at a

(c) Let $g(x)$ be a constant function. Given $a \in \mathbb{R}$,

$$
\forall \epsilon > 0, \text{ take } \delta = 1, \forall x \text{ such that } 0 < |x - a| < \delta, \quad |g(x) - g(a)| = 0 < \epsilon
$$

So, $\lim_{x\to a} g(x) = g(a)$ and g is continuous at a.

Let $f(x) = x$. Given $a \in \mathbb{R}$,

 $\forall \epsilon > 0$, take $\delta = \epsilon, \forall x$ such that $0 < |x - a| < \delta$, $|f(x) - f(a)| = |x - a| < \epsilon$

So, $\lim_{x\to a} f(x) = f(a)$ and f is continuous at a.

Theorem 2: Extreme Value Theorem (EVT)

Suppose f is continuous on [a, b]. Then, f attains its maximum and minimum, i.e., there exist $c, d \in [a, b]$

 $f(c) \leq f(x) \leq f(d)$

for all $x \in [a, b]$.

Proof

Let $M = \sup \{f(x) \mid x \in [a, b]\}.$ Then, $\forall x \in [a, b],$ $f(x) \leq M.$ Assume f doesn't attain M.

$$
\forall n \in \mathbb{Z}^+, \exists x_n \in [a, b], \quad |f(x_n) - M| < \frac{1}{n}
$$

Since [a, b] is closed and bounded, by Bolzano-Weierstrass theorem, $(x_n)_{n\in\mathbb{Z}^+}$ has a subsequence $(x_{n_k})_{k \in \mathbb{Z}^+}$ such that

$$
\lim_{k\to\infty}x_{n_k}=x_0
$$

for some $x_0 \in [a, b]$. By squeeze theorem and continuity,

$$
\lim_{k \to \infty} |f(x_{n_k}) - M| = 0 \implies f(x_0) = \lim_{k \to \infty} f(x_{n_k}) = M
$$

which contradicts with our assumption. Hence, f attains its maximum.

f also attains its minimum because $-f$ attains its maximum.

$$
\qquad \qquad \Box
$$

Theorem 3: Intermediate Value Theorem (IVT)

If f is continuous on $[a, b]$, then, for any $v \in [f(a), f(b)]$ (or $[f(b), f(a)]$),

$$
f(c) = v
$$
 for some $c \in [a, b]$.

Proof

The statement is trivial if $v = f(a)$ or $f(b)$. Otherwise, say, $f(a) < v < f(b)$. By subtracting v, we may assume $f(a) < 0, f(b) > 0$ and $v = 0$.

Assume
$$
\forall x \in [a, b],
$$
 $f(x) \neq 0$.
\nLet $a_0 = a, b_0 = b$ and $x_0 = \frac{a_0 + b_0}{2}$. Then, $f(x_0) \neq 0$. Let
\n
$$
(a_1, b_1) = \begin{cases} (a_0, x_0) & \text{if } f(x_0) > 0 \\ (x_0, b_0) & \text{if } f(x_0) < 0 \end{cases}
$$

Either way, we have

$$
f(a_1) < 0
$$
, $f(b_1) > 0$, $|b_1 - a_1| = \frac{b - a}{2}$

Similarly, we define $x_1 =$ $a_1 + b_1$ 2 and

$$
(a_2, b_2) = \begin{cases} (a_1, x_1) & \text{if } f(x_1) > 0\\ (x_1, b_1) & \text{if } f(x_1) < 0 \end{cases}
$$

Again, we have

$$
f(a_2) < 0
$$
, $f(b_2) > 0$, $|b_2 - a_2| = \frac{b_1 - a_1}{2} = \frac{b - a}{2^2}$

In this manner, we construct an increasing sequence $(a_n)_{n\in\mathbb{Z}^+}$ and a decreasing sequence $(b_n)_{n\in\mathbb{Z}^+}$ such that

$$
\forall n \in \mathbb{Z}^+, \quad a_n < b_n, \quad f(a_n) < 0, \quad f(b_n) > 0, \quad |b_n - a_n| = \frac{b - a}{2^n}
$$

Since $a_n < b_n < b_1$ and $a_1 < a_n < b_n$ for all n, a_n is bounded above and b_n is bounded below. By Monotone convergence theorem,

$$
\lim_{n \to \infty} a_n = \overline{a} \le \overline{b} = \lim_{n \to \infty} b_n
$$

Claim 1: $\lim_{n\to\infty}$ 1 $\frac{1}{2^n} = 0$ Given $\epsilon > 0$, take $N =$ \vert 1 ϵ $\overline{}$ $+ 1$ ($[*]$ is the round-down function). Then,

$$
\forall n > N, \quad n > \frac{1}{\epsilon} \implies 2^n > n > \frac{1}{\epsilon} \implies \left| \frac{1}{2^n} \right| < \epsilon \qquad \triangle
$$

By claim 1,

$$
|b_n - a_n| = \frac{b_n}{2^n} \implies \lim_{n \to \infty} |b_n - a_n| = 0 \implies \overline{a} = b
$$

 $b - a$

Notice that f is continuous at $\overline{a} = b$. Thus,

$$
0 \ge \lim_{n \to \infty} f(a_n) = f(\overline{a}) = f(\overline{b}) = \lim_{n \to \infty} f(b_n) \ge 0
$$

Hence, $f(\overline{a}) = 0$, contradicting our assumption.

Theorem 4: Bolzano's Theorem

Suppose f is continuous on [a, b]. If $f(a)$, $f(b)$ have opposite signs, then

 $f(c) = 0$ for some $c \in (a, b)$.

Proof

By putting $v = 0$ in IVT.

2.2 Differentiability

Proposition 2

 $f(x)$ is differentiable at $a \iff Lf'(a), Rf'(a)$ both exist and are equal

Proof

By the corresponding result about limits.

Theorem 5

 $f(x)$ is differentiable at $a \implies f(x)$ is continuous at a

Proof

Since $g(x) = x - a$ is continuous over \mathbb{R} ,

$$
\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}(x - a) = f'(a)g(a) = 0 \implies \lim_{x \to a} f(x) = f(a)
$$

Proposition 3

(a) If f, g are differentiable at a , then $f \pm g$, $f \cdot g$ and $\frac{f}{f}$ g (if $g(a) \neq 0$) are all differentiable at a with $(f \pm g)'(a) = f'(a) \pm g'(a)$ $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$ $\int f$ g $\int' (a) = \frac{f'(a)g(a) - f(a)g'(a)}{a}$ $g(a)^2$ (b) If f is differentiable at a and g is differentiable at $f(a)$, then $g \circ f$ is differentiable at a with $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$

(c) $f(x) = c \in \mathbb{R}$ and $g(x) = x$ are differentiable over \mathbb{R} with $f'(x) = 0$ and $g'(x) = 1$.

Proof

(a) By definition,

$$
\lim_{x \to a} \frac{(f(x) \pm g(x)) - (f(a) \pm g(a))}{x - a} = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \pm \frac{g(x) - g(a)}{x - a} \right) = f'(a) \pm g'(a)
$$

Notice that f, g are differentiable at a implies that f, g are continuous at a.

$$
(f \cdot g)'(a) = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a}
$$

=
$$
\lim_{x \to a} \frac{f(x)g(x) - f(a)g(x) + f(a)g(x) - f(a)g(a)}{x - a}
$$

=
$$
\lim_{x \to a} \left(g(x) \frac{f(x) - f(a)}{x - a} + f(a) \frac{g(x) - g(a)}{x - a} \right)
$$

=
$$
g(a)f'(a) + f(a)g'(a)
$$

$$
\left(\frac{f}{g}\right)'(a) = \lim_{x \to a} \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a} \n= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(x)}{(x - a)g(x)g(a)} \n= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(a) + f(a)g(a) - f(a)g(x)}{(x - a)g(x)g(a)} \n= \lim_{x \to a} \frac{1}{g(x)g(a)} \left(g(a)\frac{f(x) - f(a)}{x - a} - f(a)\frac{g(x) - g(a)}{x - a}\right) \n= \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}
$$

(b) Given $(x_n)_{n\in\mathbb{Z}^+}$ such that $x_n \neq a$ and $\lim_{n\to\infty} x_n = a$, let $y_n = f(x_n)$ and $b = f(a)$. Since f is differentiable at a ,

$$
\lim_{n \to \infty} y_n = \lim_{n \to \infty} f(x_n) = f(a) = b
$$

$$
\lim_{n \to \infty} \frac{y_n - b}{x_n - a} = \lim_{n \to \infty} \frac{f(x_n) - f(a)}{x_n - a} = f'(a)
$$

Assume that $y_n \neq b$ for sufficiently large *n*. Then,

$$
\lim_{n \to \infty} \frac{g(f(x_n)) - g(f(a))}{x_n - a} = \lim_{n \to \infty} \frac{g(y_n) - g(b)}{y_n - b} \cdot \frac{y_n - b}{x_n - a} = g'(b)f'(a)
$$

Otherwise, there exists a subsequence $(x_{n_k})_{k\in\mathbb{Z}^+}$ such that $y_{n_k} = b$ for all $k \in \mathbb{Z}^+$. In this case,

$$
f'(a) = \lim_{k \to \infty} \frac{f(x_{n_k}) - f(a)}{x_{n_k} - a} = 0
$$

Notice that

$$
\frac{g(f(x_n)) - g(f(a))}{x_n - a} = \begin{cases} \frac{g(y_n) - g(b)}{x_n - a} = 0 & \text{if } y_n = b \\ \frac{g(y_n) - g(b)}{y_n - b} \cdot \frac{y_n - b}{x_n - a} \to g'(b) f'(a) = 0 & \text{if } y_n \neq b \end{cases}
$$

That means

$$
\forall \epsilon > 0, \exists N \in \mathbb{Z}^+, \forall n > N, \quad \left| \frac{g(f(x_n)) - g(f(a))}{x_n - a} \right| < \epsilon
$$

Therefore,

$$
\lim_{n \to \infty} \frac{g(f(x_n)) - g(f(a))}{x_n - a} = 0 = g'(b)f'(a)
$$

Hence, by sequential criterion,

$$
(g \circ f)'(a) = g'(b)f'(a) = g'(f(a)) \cdot f'(a)
$$

(c) Given $a \in \mathbb{R}$, since constant functions are continuous,

$$
f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} 0 = 0
$$

$$
g'(a) = \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = \lim_{x \to a} 1 = 1
$$

Theorem 6: Rolle's Theorem

Suppose $f(x)$ is continuous on [a, b] and differentiable on (a, b) . If $f(a) = f(b)$, then \prime

$$
f'(c) = 0 \quad \text{ for some } c \in (a, b).
$$

Proof

If
$$
\forall x \in (a, b)
$$
, $f(x) = f(a)$, then we might take $c = \frac{a+b}{2}$:

$$
f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = 0
$$

Assume $f(d) > f(a)$ for some $d \in (a, b)$. By EVT,

$$
\exists c \in [a, b], \quad M = f(c) = \max \{ f(x) \mid x \in [a, b] \}
$$

$$
f(c) \ge f(d) > f(a) \implies c \in (a, b)
$$

$$
0 \ge \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} = Rf'(c) = Lf'(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \ge 0
$$

Therefore, $f'(c) = 0$ as desired. The case when $f(d) < f(a)$ for some $d \in (a, b)$ can be handled by considering $-f(x)$.

Theorem 7: Mean Value Theorem (Lagrange)

Suppose $f(x)$ is continuous on [a, b] and differentiable on (a, b) . Then,

$$
f'(c) = \frac{f(b) - f(a)}{b - a}
$$
 for some $c \in (a, b)$.

Proof

Let

$$
g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)
$$

Then, $g(x)$ is continuous on [a, b] and differentiable on (a, b) . Moreover,

$$
g(a) = f(a) = f(b) - \frac{f(b) - f(a)}{b - a}(b - a) = g(b)
$$

By Rolle's Theorem,

$$
\exists c \in (a, b), \quad 0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}
$$

and we are done. 7°

 \Box

Theorem 8

- (a) If f is continuous and strictly increasing (or strictly decreasing) over an open interval I, then f^{-1} exists and is continuous over $f(I)$.
- (b) If f is differentiable and $f' > 0$ (or $f' < 0$) over an open interval I, then f^{-1} exists and is differentiable over $f(I)$ with

$$
\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}
$$

Proof

(a) Suppose f is strictly increasing over I. By definition, f with codomain $f(I)$ is surjective. Moreover,

$$
x_1 \neq x_2 \implies x_1 < x_2 \text{ or } x_1 > x_2 \implies f(x_1) < f(x_2) \text{ or } f(x_1) > f(x_2) \implies f(x_1) \neq f(x_2)
$$

So, f is also injective and thus, f^{-1} exists.

Given $b \in f(I)$, let $a = f^{-1}(b)$. For any strictly increasing sequence $(y_n)_{n \in \mathbb{Z}^+}$ such that $\lim_{n \to \infty} y_n = b$, we consider the sequence $x_n = f^{-1}(y_n)$.

$$
x_n \ge a \implies y_n = f(x_n) \ge f(a) = b
$$
 (contradiction)

So, $x_n < a$. By similar arguments, we can show that x_n is a strictly increasing sequence. By monotone convergence theorem,

$$
\lim_{n \to \infty} x_n = a' \le a
$$

Since f is continuous,

$$
\lim_{n \to \infty} x_n = a' \implies \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} y_n = f(a') \implies f(a') = b \implies a' = a
$$

In other words,

$$
\lim_{n \to \infty} f^{-1}(y_n) = \lim_{n \to \infty} x_n = a = f^{-1}(b)
$$

By sequential criterion, we can conclude that

$$
\lim_{y \to b^{-}} f^{-1}(y) = f^{-1}(b)
$$

By symmetry, we also have $\lim_{y \to b^+} f^{-1}(y) = f^{-1}(b)$. Hence, f^{-1} is continuous at any $b \in f(I)$.

If f is strictly decreasing, then $-f$ is strictly increasing and $g(x) = (-f)^{-1}(-x)$ will be the inverse of $f(x)$.

(b) Suppose $f' > 0$ over I. For any $x_1 < x_2$, f is differentiable over $[x_1, x_2]$. By MVT,

$$
\exists c \in (x_1, x_2), \quad \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) > 0 \implies f(x_2) > f(x_1)
$$

So, f is strictly increasing over I. By part (a), f^{-1} exists and is continuous over $f(I)$. Given $b \in f(I)$, let $a = f^{-1}(b)$. For any sequence $(y_n)_{n \in \mathbb{Z}^+}$ such that $y_n \neq b$ and $\lim_{n\to\infty} y_n = b$, we consider the sequence $x_n = f^{-1}(y_n)$. Then, $x_n \neq a$. Since f^{-1} is continuous,

$$
\lim_{n \to \infty} x_n = \lim_{n \to \infty} f^{-1}(y_n) = f^{-1}(b) = a
$$

Therefore,

$$
\lim_{n \to \infty} \frac{f^{-1}(y_n) - f^{-1}(b)}{y_n - b} = \lim_{n \to \infty} \frac{x_n - a}{f(x_n) - f(a)} \n= \frac{1}{\lim_{n \to \infty} \frac{f(x_n) - f(a)}{x_n - a}} \n= \frac{1}{f'(a)} (f'(a) \neq 0)
$$

By sequential criterion,

$$
(f^{-1})'(b) = \lim_{y \to b} \frac{f^{-1}(y) - f^{-1}(b)}{y - b} = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}
$$