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Appendix 2: Continuity and Differentiability

2.1 Continuity

Theorem 1: Sequential criterion for continuity
For any function f(x) and a ∈ Df ,

f(x) is continuous at a ⇐⇒ ∀(an)n∈Z+ such that lim
n→∞

an = a, lim
n→∞

f(an) = f(a)

Proof

=⇒
Given (an)n∈Z+ such that lim

n→∞
an = a, for all ε > 0,

f continuous at a =⇒ ∃δ > 0,∀x such that 0 < |x− a| < δ, |f(x)− f(a)| < ε

In fact,
a ∈ Df =⇒ ∀x such that |x− a| < δ, |f(x)− f(a)| < ε

Since lim
n→∞

an = a, we have

∃N ∈ Z+,∀n > N, |an − a| < δ =⇒ |f(an)− f(a)| < ε

Hence, lim
n→∞

f(an) = f(a).

⇐=

From the given condition,

∀(an)n∈Z+ such that an 6= a and lim
n→∞

an = a, lim
n→∞

f(an) = f(a)

By the sequential criterion of limits, we conclude that

lim
x→a

f(x) = f(a),

which means f is continuous at a. �

Proposition 1

(a) If f, g are continuous at a, then

f ± g, f · g and
f

g
(if g(a) 6= 0) are all continuous at a

(b) If f is continuous at a and g is continuous at f(a), then g ◦ f is continuous at a

(c) Constant functions and f(x) = x are continuous over R.
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Proof

(a) Since f, g are continuous at a, we have

lim
x→a

f(x) = f(a) and lim
x→a

g(x) = g(a)

Therefore,

lim
x→a

(f(x)+g(x)) =
(

lim
x→a

f(x)
)

+
(

lim
x→a

g(x)
)

= f(a)+g(a) =⇒ f+g is continuous at a

The proofs for the other operations are similar.

(b) Given a sequence (an)n∈Z+ such that lim
n→∞

an = a, by the sequential criterion of

continuity,
lim
n→∞

bn = lim
n→∞

f(an) = f(a) = b

Similarly, by consider the sequence (bn)n∈Z+ that approaches b, we also have

lim
n→∞

g(bn) = g(b)

Hence,

lim
n→∞

(g ◦ f)(an) = lim
n→∞

g(bn) = g(b) = (g ◦ f)(a) =⇒ g ◦ f is continuous at a

(c) Let g(x) be a constant function. Given a ∈ R,

∀ε > 0, take δ = 1,∀x such that 0 < |x− a| < δ, |g(x)− g(a)| = 0 < ε

So, lim
x→a

g(x) = g(a) and g is continuous at a.

Let f(x) = x. Given a ∈ R,

∀ε > 0, take δ = ε,∀x such that 0 < |x− a| < δ, |f(x)− f(a)| = |x− a| < ε

So, lim
x→a

f(x) = f(a) and f is continuous at a. �

Theorem 2: Extreme Value Theorem (EVT)

Suppose f is continuous on [a, b]. Then, f attains its maximum and minimum, i.e., there
exist c, d ∈ [a, b]

f(c) ≤ f(x) ≤ f(d)

for all x ∈ [a, b].

Proof

Let M = sup {f(x) | x ∈ [a, b]}. Then, ∀x ∈ [a, b], f(x) ≤M .

Assume f doesn’t attain M .

∀n ∈ Z+,∃xn ∈ [a, b], |f(xn)−M | < 1

n
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Since [a, b] is closed and bounded, by Bolzano-Weierstrass theorem, (xn)n∈Z+ has a sub-
sequence (xnk

)k∈Z+ such that
lim
k→∞

xnk
= x0

for some x0 ∈ [a, b]. By squeeze theorem and continuity,

lim
k→∞
|f(xnk

)−M | = 0 =⇒ f(x0) = lim
k→∞

f(xnk
) = M

which contradicts with our assumption. Hence, f attains its maximum.

f also attains its minimum because −f attains its maximum. �

Theorem 3: Intermediate Value Theorem (IVT)

If f is continuous on [a, b], then, for any v ∈ [f(a), f(b)] (or [f(b), f(a)]),

f(c) = v for some c ∈ [a, b].

Proof

The statement is trivial if v = f(a) or f(b). Otherwise, say, f(a) < v < f(b). By
subtracting v, we may assume f(a) < 0, f(b) > 0 and v = 0.

Assume ∀x ∈ [a, b], f(x) 6= 0.

Let a0 = a, b0 = b and x0 =
a0 + b0

2
. Then, f(x0) 6= 0. Let

(a1, b1) =

{
(a0, x0) if f(x0) > 0

(x0, b0) if f(x0) < 0

Either way, we have

f(a1) < 0, f(b1) > 0, |b1 − a1| =
b− a

2

Similarly, we define x1 =
a1 + b1

2
and

(a2, b2) =

{
(a1, x1) if f(x1) > 0

(x1, b1) if f(x1) < 0

Again, we have

f(a2) < 0, f(b2) > 0, |b2 − a2| =
b1 − a1

2
=
b− a

22

In this manner, we construct an increasing sequence (an)n∈Z+ and a decreasing sequence
(bn)n∈Z+ such that

∀n ∈ Z+, an < bn, f(an) < 0, f(bn) > 0, |bn − an| =
b− a

2n
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Since an < bn < b1 and a1 < an < bn for all n, an is bounded above and bn is bounded
below. By Monotone convergence theorem,

lim
n→∞

an = a ≤ b = lim
n→∞

bn

Claim 1: lim
n→∞

1

2n
= 0

Given ε > 0, take N =

⌊
1

ε

⌋
+ 1 (b∗c is the round-down function). Then,

∀n > N, n >
1

ε
=⇒ 2n > n >

1

ε
=⇒

∣∣∣∣ 1

2n

∣∣∣∣ < ε 4

By claim 1,

|bn − an| =
b− a

2n
=⇒ lim

n→∞
|bn − an| = 0 =⇒ a = b

Notice that f is continuous at a = b. Thus,

0 ≥ lim
n→∞

f(an) = f(a) = f(b) = lim
n→∞

f(bn) ≥ 0

Hence, f(a) = 0, contradicting our assumption. �

Theorem 4: Bolzano’s Theorem

Suppose f is continuous on [a, b]. If f(a), f(b) have opposite signs, then

f(c) = 0 for some c ∈ (a, b).

Proof

By putting v = 0 in IVT. �

2.2 Differentiability

Proposition 2

f(x) is differentiable at a ⇐⇒ Lf ′(a), Rf ′(a) both exist and are equal

Proof

By the corresponding result about limits. �

Theorem 5

f(x) is differentiable at a =⇒ f(x) is continuous at a
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Proof

Since g(x) = x− a is continuous over R,

lim
x→a

(f(x)− f(a)) = lim
x→a

f(x)− f(a)

x− a
(x− a) = f ′(a)g(a) = 0 =⇒ lim

x→a
f(x) = f(a)

�

Proposition 3

(a) If f, g are differentiable at a, then

f ± g, f · g and
f

g
(if g(a) 6= 0) are all differentiable at a with

(f ± g)′(a) = f ′(a)± g′(a)

(f · g)′(a) = f ′(a)g(a) + f(a)g′(a)(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g(a)2

(b) If f is differentiable at a and g is differentiable at f(a), then g ◦ f is differentiable at
a with

(g ◦ f)′(a) = g′(f(a)) · f ′(a)

(c) f(x) = c ∈ R and g(x) = x are differentiable over R with f ′(x) = 0 and g′(x) = 1.

Proof

(a) By definition,

lim
x→a

(f(x)± g(x))− (f(a)± g(a))

x− a
= lim

x→a

(
f(x)− f(a)

x− a
± g(x)− g(a)

x− a

)
= f ′(a)±g′(a)

Notice that f, g are differentiable at a implies that f, g are continuous at a.

(f · g)′(a) = lim
x→a

f(x)g(x)− f(a)g(a)

x− a

= lim
x→a

f(x)g(x)− f(a)g(x) + f(a)g(x)− f(a)g(a)

x− a

= lim
x→a

(
g(x)

f(x)− f(a)

x− a
+ f(a)

g(x)− g(a)

x− a

)
= g(a)f ′(a) + f(a)g′(a)
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(
f

g

)′
(a) = lim

x→a

f(x)
g(x)
− f(a)

g(a)

x− a

= lim
x→a

f(x)g(a)− f(a)g(x)

(x− a)g(x)g(a)

= lim
x→a

f(x)g(a)− f(a)g(a) + f(a)g(a)− f(a)g(x)

(x− a)g(x)g(a)

= lim
x→a

1

g(x)g(a)

(
g(a)

f(x)− f(a)

x− a
− f(a)

g(x)− g(a)

x− a

)
=

f ′(a)g(a)− f(a)g′(a)

g(a)2

(b) Given (xn)n∈Z+ such that xn 6= a and lim
n→∞

xn = a, let yn = f(xn) and b = f(a). Since

f is differentiable at a,

lim
n→∞

yn = lim
n→∞

f(xn) = f(a) = b

lim
n→∞

yn − b
xn − a

= lim
n→∞

f(xn)− f(a)

xn − a
= f ′(a)

Assume that yn 6= b for sufficiently large n. Then,

lim
n→∞

g(f(xn))− g(f(a))

xn − a
= lim

n→∞

g(yn)− g(b)

yn − b
· yn − b
xn − a

= g′(b)f ′(a)

Otherwise, there exists a subsequence (xnk
)k∈Z+ such that ynk

= b for all k ∈ Z+. In
this case,

f ′(a) = lim
k→∞

f(xnk
)− f(a)

xnk
− a

= 0

Notice that

g(f(xn))− g(f(a))

xn − a
=


g(yn)− g(b)

xn − a
= 0 if yn = b

g(yn)− g(b)

yn − b
· yn − b
xn − a

→ g′(b)f ′(a) = 0 if yn 6= b

That means

∀ε > 0,∃N ∈ Z+,∀n > N,

∣∣∣∣g(f(xn))− g(f(a))

xn − a

∣∣∣∣ < ε

Therefore,

lim
n→∞

g(f(xn))− g(f(a))

xn − a
= 0 = g′(b)f ′(a)

Hence, by sequential criterion,

(g ◦ f)′(a) = g′(b)f ′(a) = g′(f(a)) · f ′(a)
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(c) Given a ∈ R, since constant functions are continuous,

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a
0 = 0

g′(a) = lim
x→a

g(x)− g(a)

x− a
= lim

x→a
1 = 1

�

Theorem 6: Rolle’s Theorem
Suppose f(x) is continuous on [a, b] and differentiable on (a, b).
If f(a) = f(b), then

f ′(c) = 0 for some c ∈ (a, b).

Proof

If ∀x ∈ (a, b), f(x) = f(a), then we might take c =
a+ b

2
:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
= 0

Assume f(d) > f(a) for some d ∈ (a, b). By EVT,

∃c ∈ [a, b], M = f(c) = max {f(x) | x ∈ [a, b]}

f(c) ≥ f(d) > f(a) =⇒ c ∈ (a, b)

0 ≥ lim
x→c+

f(x)− f(c)

x− c
= Rf ′(c) = Lf ′(c) = lim

x→c−

f(x)− f(c)

x− c
≥ 0

Therefore, f ′(c) = 0 as desired. The case when f(d) < f(a) for some d ∈ (a, b) can be
handled by considering −f(x). �

Theorem 7: Mean Value Theorem (Lagrange)

Suppose f(x) is continuous on [a, b] and differentiable on (a, b). Then,

f ′(c) =
f(b)− f(a)

b− a
for some c ∈ (a, b).

Proof

Let

g(x) = f(x)− f(b)− f(a)

b− a
(x− a)

Then, g(x) is continuous on [a, b] and differentiable on (a, b). Moreover,

g(a) = f(a) = f(b)− f(b)− f(a)

b− a
(b− a) = g(b)

By Rolle’s Theorem,

∃c ∈ (a, b), 0 = g′(c) = f ′(c)− f(b)− f(a)

b− a
and we are done. 7
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Theorem 8

(a) If f is continuous and strictly increasing (or strictly decreasing) over an open interval
I, then f−1 exists and is continuous over f(I).

(b) If f is differentiable and f ′ > 0 (or f ′ < 0) over an open interval I, then f−1 exists
and is differentiable over f(I) with

d

dx
f−1(x) =

1

f ′(f−1(x))

Proof

(a) Suppose f is strictly increasing over I. By definition, f with codomain f(I) is sur-
jective. Moreover,

x1 6= x2 =⇒ x1 < x2 or x1 > x2 =⇒ f(x1) < f(x2) or f(x1) > f(x2) =⇒ f(x1) 6= f(x2)

So, f is also injective and thus, f−1 exists.

Given b ∈ f(I), let a = f−1(b). For any strictly increasing sequence (yn)n∈Z+ such
that lim

n→∞
yn = b, we consider the sequence xn = f−1(yn).

xn ≥ a =⇒ yn = f(xn) ≥ f(a) = b (contradiction)

So, xn < a. By similar arguments, we can show that xn is a strictly increasing
sequence. By monotone convergence theorem,

lim
n→∞

xn = a′ ≤ a

Since f is continuous,

lim
n→∞

xn = a′ =⇒ lim
n→∞

f(xn) = lim
n→∞

yn = f(a′) =⇒ f(a′) = b =⇒ a′ = a

In other words,
lim
n→∞

f−1(yn) = lim
n→∞

xn = a = f−1(b)

By sequential criterion, we can conclude that

lim
y→b−

f−1(y) = f−1(b)

By symmetry, we also have lim
y→b+

f−1(y) = f−1(b). Hence, f−1 is continuous at any

b ∈ f(I).

If f is strictly decreasing, then −f is strictly increasing and g(x) = (−f)−1(−x) will
be the inverse of f(x).
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(b) Suppose f ′ > 0 over I. For any x1 < x2, f is differentiable over [x1, x2]. By MVT,

∃c ∈ (x1, x2),
f(x2)− f(x1)

x2 − x1
= f ′(c) > 0 =⇒ f(x2) > f(x1)

So, f is strictly increasing over I. By part (a), f−1 exists and is continuous over f(I).

Given b ∈ f(I), let a = f−1(b). For any sequence (yn)n∈Z+ such that yn 6= b and
lim
n→∞

yn = b, we consider the sequence xn = f−1(yn). Then, xn 6= a. Since f−1 is

continuous,
lim
n→∞

xn = lim
n→∞

f−1(yn) = f−1(b) = a

Therefore,

lim
n→∞

f−1(yn)− f−1(b)
yn − b

= lim
n→∞

xn − a
f(xn)− f(a)

=
1

lim
n→∞

f(xn)− f(a)

xn − a

=
1

f ′(a)
(f ′(a) 6= 0)

By sequential criterion,

(f−1)′(b) = lim
y→b

f−1(y)− f−1(b)
y − b

=
1

f ′(a)
=

1

f ′(f−1(b)) �
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