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Appendix 2: Continuity and Differentiability

2.1 Continuity

Theorem 1: Sequential criterion for continuity
For any function f(z) and a € Dy,

f(z) is continuous at a <= V(a,)nez+ such that lim a, =a, lim f(a,) = f(a)
n—oo n—o0

Proof

—

Given (ay)nez+ such that lim a, = a, for all € > 0,
n—oo

f continuous at a = 30 > 0,Vx such that 0 < |[x —a| <4, |[f(z)— f(a)] <e€
In fact,
a € Dy = Vxsuch that |z —a| <6, |f(z)— f(a)| <e

Since lim a,, = a, we have
n—oo

AN e€Zt*,¥Yn>N, |a,—a|l<é = |f(a,)— f(a)| <e

Hence, nlg& fla,) = f(a).
pr—

From the given condition,

V(an)nez+ such that a, # a and lim a, =a, lim f(a,) = f(a)

n—o0 n—oo

By the sequential criterion of limits, we conclude that
lim f(z) = f(a)

which means f is continuous at a.

Proposition 1

(a) If f,g are continuous at a, then

ftg, f-gand S (if g(a) # 0) are all continuous at a
g

(b) If f is continuous at a and g is continuous at f(a), then g o f is continuous at a

(c¢) Constant functions and f(x) = x are continuous over R.




Proof

(a) Since f, g are continuous at a, we have

lim f(x) = f(a) and  lim g(z) = g(a)

r—a r—ra

Therefore,

lim (f(z)+g(x)) = <:£1£>% f(x))—{—(glgl_r)r(llg(x)) = f(a)+g(a) = f+g is continuous at a

T—a

The proofs for the other operations are similar.

(b) Given a sequence (a,),ez+ such that lim a, = a, by the sequential criterion of
n—oo

lim b, = lim f(a,) = f(a) =10

continuity,

Similarly, by consider the sequence (b,,),cz+ that approaches b, we also have

lim g(bn) = g(b)

Hence,

lim (g o f)(a,) = lim g(b,) = g(b) = (go f)(a) = go f is continuous at a

n—r00 n—r00
(c¢) Let g(z) be a constant function. Given a € R,
Ve > 0, take § = 1,Vx such that 0 < |z —a| <0, |g(z)—g(a)|=0<e¢
So, ilg}l g(z) = g(a) and g is continuous at a.
Let f(z) = . Given a € R,
Ve > 0, take 6 = ¢,Va such that 0 < |z —a| <9, |[f(x)— f(a)|=|r—a| <€

So, lim f(z) = f(a) and f is continuous at a. ]

r—ra

Theorem 2: Extreme Value Theorem (EVT)

Suppose f is continuous on [a, b]. Then, f attains its maximum and minimum, i.e., there
exist ¢,d € [a, b]

fle) < f(z) < f(d)

for all « € [a, b].

Proof

Let M =sup{f(z) | z € [a,b]}. Then, Vx € [a,b], f(x) < M.
Assume f doesn’t attain M.

1
Vn € 27, 3y € [a 8], |f(zn) = M| <



Since [a, b] is closed and bounded, by Bolzano-Weierstrass theorem, (x,),ecz+ has a sub-
sequence (,, )gez+ such that

lim z,, = x
k—o0

for some x¢ € [a,b]. By squeeze theorem and continuity,

k—o00

which contradicts with our assumption. Hence, f attains its maximum.

f also attains its minimum because —f attains its maximum. 0

Theorem 3: Intermediate Value Theorem (IVT)

If f is continuous on [a, b], then, for any v € [f(a), f(b)] (or [f(b), f(a)]),

f(¢)=wv for some ¢ € [a,].

Proof

The statement is trivial if v = f(a) or f(b). Otherwise, say, f(a) < v < f(b). By
subtracting v, we may assume f(a) < 0, f(b) > 0 and v = 0.

Assume Vzx € [a,b], f(z)#0.
ag + bo

Let ag = a,by = b and z¢ = . Then, f(zo) # 0. Let

a _ (&0,330) if f(.fo) >0
(01,51) {(:co,bo) if f(z0) <0

Either way, we have

b—a
fla) <0, f(b)) >0, |bi—ai] = 5
.. ai + by
Similarly, we define x; = 5 and

(a9, by) = | (01 0)HEf (1) >0
(:E17b1) if f(q;l) <0

Again, we have

by —a b—a
flaz) <0, f(b2) >0, |by—asl = 12 1 -

In this manner, we construct an increasing sequence (a,),cz+ and a decreasing sequence
(by)nez+ such that

b—a
2n

VneZt, a,<b, fla,) <0, f(by) >0, |by—a, =



Since a, < b, < b; and a; < a, < b, for all n, a, is bounded above and b,, is bounded
below. By Monotone convergence theorem,

lim a, =a < b= lim b,
n—ro0 n—oo

1
Claim 1: lim — =0

n—oo 2N

1
Given € > 0, take N = {—J + 1 (|*] is the round-down function). Then,
€

1 1
Vn>N, n>- = 2">n>- = <€ A

€ €

2n

By claim 1,

b—a
2n

Notice that f is continuous at @ = b. Thus,

by, — a,| = — lim |b, —a,| =0 = a=»b
n—oQ

0> lim f(a,) = (@) = £(5) = lim f(b) =0

n—o0 n—oo

Hence, f(a) = 0, contradicting our assumption. O

Theorem 4: Bolzano’s Theorem

Suppose f is continuous on [a, b]. If f(a), f(b) have opposite signs, then

f(c) =0 for some ¢ € (a,b).

Proof

By putting v =0 in IVT. O

2.2 Differentiability

Proposition 2

f(x) is differentiable at a <= Lf'(a), Rf'(a) both exist and are equal

Proof

By the corresponding result about limits. O

Theorem 5

f(z) is differentiable at a« = f(x) is continuous at a




Proof

Since g(x) = x — a is continuous over R,

tin (/) — ) = i LI ) = ajgta) =0 = i 1) = 5@
0
Proposition 3
(a) If f, g are differentiable at a, then
fxg, f-gand 5 (if g(a) # 0) are all differentiable at a with
(f £9)'(a) = f'(a) £ ¢'(a)
(f-9)'(a) = f'(a)g(a) + f(a)g'(a)
SN Fla)gla) = fa)g(a)
( g > )= g(a)?
(b) If f is differentiable at a and g is differentiable at f(a), then g o f is differentiable at
a with
(g0 f)(a) =g'(f(a)) - f'(a)
(¢) f(z) =c € R and g(z) = z are differentiable over R with f’(z) =0 and ¢'(z) = 1.

Proof

(a) By definition,

o) ate) = (@) E0le) _ (1) =S, 901 =0@D) _ ey

Tr —a r—a

lim
Tr—a T — Q r—a

Notice that f, g are differentiable at a implies that f, g are continuous at a.

f(x)g(x) — fla)g(a)

(f-9)(a) = lim

r—a €T —a

o T@)ee) — F(@)ge) + f(@)g(w) ~ fa)g(a)
=t o H L) o) o)
= 4(a)f'(a) + f(a)g (@)



g Tr—a Tr — a
L T@)gla) ~ Fa)e(a)
v=a (v —a)g(r)g(a)
L T@)gla) — fla)g(a) + F(@gla) — Fa)o(a)
z—a (r —a)g(r)g(a)
. 1 f(z) — f(a) g(x) — g(a)
= e YW T, )
_ ['a)g(a) — f(a)g'(a)

(b) Given (z,),ez+ such that x, # a and lim z,, = a, let y, = f(z,) and b = f(a). Since

n—oo
f is differentiable at a,
Tim y, = lim f(z,) = f(a) = b

lim yn_b — lim f(xn)_f(a)

n—oo Ty — 4 n—00 ITp —a

= f'(a)

Assume that y, # b for sufficiently large n. Then,

n—00 Ty — @ n—oo Y, —b Ty — Q

Otherwise, there exists a subsequence (z, )yez+ such that y,, =0 for all k € ZT. In

this case,
f’(a) _ kh_{EO f(l:;k) : (J:(a) —0
Notice that
9(yn) —g(b) .
oo —otf@) _ )" e =0 =" if y, = b
Ty —a g(QZ):g( ) gn:a%gl(b)f/(a)zo ifyn#b
That means
Ve>0.IN € Zt Vn> N ’g<f(xn))_g(f(a)> <e
Ty — @
Therefore,
i @D =0 @)

n—00 Ty —Q

Hence, by sequential criterion,

(gof)(a) =g 1) (a) =g'(f(a))- ['(a)



(c¢) Given a € R, since constant functions are continuous,

f(z) — f(a)

f'(a) = lim =lim 0 =0
T—a T — a T—a
d(a) = limM =liml=1
T—a xr—a T—a
O
Theorem 6: Rolle’s Theorem
Suppose f(x) is continuous on [a, b] and differentiable on (a, b).
If f(a) = f(b), then
f'(¢) =0 for some ¢ € (a,b).
Proof
) a+b
If Vo € (a,b), f(x)= f(a), then we might take ¢ = —
. fleth) = [l
/ _ _
fie) = Jim h =0
Assume f(d) > f(a) for some d € (a,b). By EVT,
Scefabl, M= fe) = max{f(z) | & € [a,b]}
f(e) = f(d) > f(a) = c€(a,b)
z—ct r—cC T—c™ r—cC
Therefore, f'(c) = 0 as desired. The case when f(d) < f(a) for some d € (a,b) can be
handled by considering — f(z). O

Theorem 7: Mean Value Theorem (Lagrange)

Suppose f(x) is continuous on [a, b] and differentiable on (a,b). Then,

f(b) = f(a)

fle) ==

for some ¢ € (a,b).

Proof

Let
f(b) = f(a)

g(z) = f(z) — ﬁ(w —a)
Then, g(x) is continuous on [a, b] and differentiable on (a,b). Moreover,

f(b) = f(a)

o) = f(a) = o) - H2 =

By Rolle’s Theorem,

(b—a) = g(b)

f(b) = f(a)

Jc e (a,b0), 0=4'(c)= f'(c) - b—a

and we are done. 7



Theorem 8

(a) If f is continuous and strictly increasing (or strictly decreasing) over an open interval
I, then f~! exists and is continuous over f([).

(b) If f is differentiable and f’ > 0 (or f’ < 0) over an open interval I, then f~! exists
and is differentiable over f(I) with

1

d ., B
& = ey

Proof
(a) Suppose f is strictly increasing over I. By definition, f with codomain f(7) is sur-

jective. Moreover,

Ty F Ty = 1 < Ty 0r Ty >y = f(x1) < f(xa) or f(z1) > f(ae) = f(x1) # f(x2)

So, f is also injective and thus, f~! exists.
Given b € f(I), let a = f~(b). For any strictly increasing sequence (¥, )nez+ such

that lim y, = b, we consider the sequence z,, = f~(y,).
n—oo

Tp>a = Yy, = f(x,) > f(a) =b (contradiction)

So, =, < a. By similar arguments, we can show that x, is a strictly increasing
sequence. By monotone convergence theorem,

lim 2z, =d <a
n—oo

Since f is continuous,

lim z, =ad = lim f(x,) = lim y, = f(d') = f(d)=b = d' =a
n—oo

n—oo n—oo
In other words,
lim f_l(yn) = lim z, =a= f_l(b>
n—oo n—oo

By sequential criterion, we can conclude that

lim f~'(y) = f7(b)

y—b—

By symmetry, we also have lirgl+ f'(y) = f1(b). Hence, f~! is continuous at any
Yy—
be f(I).

If f is strictly decreasing, then — f is strictly increasing and g(z) = (—f) ™' (—z) will
be the inverse of f(z).



(b) Suppose f" > 0 over I. For any x; < x5, f is differentiable over [zq,x5]. By MVT,
f(x2) = fz1)

To — I

de € (z1,22), = f'(c) >0 = f(22) > f(21)

So, f is strictly increasing over I. By part (a), f~! exists and is continuous over f(I).

Given b € f(I), let a = f~1(b). For any sequence (y,)ncz+ such that y, # b and
lim y, = b, we consider the sequence z,, = f~!(y,). Then, z,, # a. Since f~!is

Zgriginuous,
ILm Ty = le Ty = 1) =a
Therefore,
f ) = F710) Tp —a
A T = e = )
1
SN
n—oo T, —a
1 !
By sequential criterion,
1y fHy) — 1) 1 1
() =1 = =
SO =T T @ T o) s



