THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1510 Calculus for Engineers by Dr. Liu Chun Lung (Kelvin)

Appendix 1: Formal Definition of Limits

1.1 Limits of sequences

Definition 1 For a sequence $(a_n)_{n \in \mathbb{Z}^+}$, we say that $\lim_{n \to \infty} a_n = L$ if $\forall \epsilon > 0, \exists N \in \mathbb{Z}^+, \forall n > N, \quad |a_n - L| < \epsilon$ We say that $\lim_{n \to \infty} a_n = \infty$ if $\forall M \in \mathbb{R}, \exists N \in \mathbb{Z}^+, \forall n > N, \quad a_n > M$ We say that $\lim_{n \to \infty} a_n = -\infty$ if $\forall M \in \mathbb{R}, \exists N \in \mathbb{Z}^+, \forall n > N, \quad a_n < M$

 $\lim_{n \to \infty} a_n = \infty$

· · · · ·
Theorem 1: Squeeze Theorem (Sandwich Theorem)
Suppose $(a_n)_{n \in \mathbb{Z}^+}, (b_n)_{n \in \mathbb{Z}^+}, (c_n)_{n \in \mathbb{Z}^+}$ are three sequences such that
$b_n < a_n < c_n$ for sufficiently large n
(That is, $\exists N \in \mathbb{Z}^+, \forall n > N, b_n \le a_n \le c_n$)
Then,
$\lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = L \implies \lim_{n \to \infty} a_n = L$
$n \rightarrow \infty$ $n \rightarrow \infty$ $n \rightarrow \infty$ $n \rightarrow \infty$
Similarly,
$\lim_{n \to \infty} b_n = \infty \text{ (DNE)} \implies \lim_{n \to \infty} a_n = \infty \text{ (DNE)}$
$n \rightarrow \infty$ $n \rightarrow \infty$ $n \rightarrow \infty$ $n \rightarrow \infty$
$\lim_{n \to \infty} c_n = -\infty \text{ (DNE)} \implies \lim_{n \to \infty} a_n = -\infty \text{ (DNE)}$
$n \rightarrow \infty$ $n \rightarrow \infty$ $n \rightarrow \infty$ $n \rightarrow \infty$

<u>Proof</u>

Let $N_0 \in \mathbb{Z}^+$ such that

$$\forall n > N_0, \quad b_n \le a_n \le c_n$$

By definition, given $\epsilon > 0$, there exist $N_1, N_2 \in \mathbb{Z}$ such that

$$\forall n_1 > N_1, n_2 > N_2, \quad |b_{n_1} - L|, |c_{n_2} - L| < \epsilon$$

Take $N = \max\{N_0, N_1, N_2\}$. Then, for all n > N, we have

$$|b_n - L|, |c_n - L| < \epsilon$$
 and $b_n \le a_n \le c_n$
 $\implies -\epsilon < b_n - L \le a_n - L \le c_n - L < \epsilon$
 $\implies |a_n - L| < \epsilon$

as desired. The result about $\pm\infty$ follow directly from definitions.

Proposition 1

For any sequence $(a_n)_{n \in \mathbb{Z}^+}$,

$$\lim_{n \to \infty} a_n = L \iff \lim_{n \to \infty} (a_n - L) = 0$$

Proof

Straightly from definition.

Proposition 2

Suppose $(a_n)_{n\in\mathbb{Z}^+}$ be a sequence such that $\lim_{n\to\infty} a_n$ exists. $\forall c\in\mathbb{R}$,

$$\lim_{n \to \infty} (ca_n) = c \left(\lim_{n \to \infty} a_n \right)$$

Proof

Let $\lim_{n\to\infty} a_n = L$. By Proposition 1, we may assume L = 0. The statement is trivial when c = 0.

Suppose $c \neq 0$. Given $\epsilon > 0$, there exists N such that

$$\forall n > N, \quad |a_n| < \frac{\epsilon}{|c|}$$

Hence, for any n > N,

$$|ca_n| \le |c||a_n| < \epsilon$$

-	-	-	
			L
			L

Proposition 3

For any sequence $(a_n)_{n \in \mathbb{Z}^+}$,

$$\lim_{n \to \infty} a_n = 0 \iff \lim_{n \to \infty} |a_n| = 0$$

Proof

 \implies

Straightly from definition.

 \Leftarrow

Since

$$\forall n \in \mathbb{Z}^+, \quad -|a_n| \le a_n \le |a_n|$$

and

$$\lim_{n \to \infty} (-|a_n|) = -\lim_{n \to \infty} |a_n| = 0 = \lim_{n \to \infty} |a_n|,$$

the result follows from the squeeze theorem.

Theorem 2

Suppose $(a_n)_{n \in \mathbb{Z}^+}$ and $(b_n)_{n \in \mathbb{Z}^+}$ are two sequences such that $\lim_{n \to \infty} a_n$, $\lim_{n \to \infty} b_n$ both exist.

$$\lim_{n \to \infty} (a_n \pm b_n) = \left(\lim_{n \to \infty} a_n\right) \pm \left(\lim_{n \to \infty} b_n\right)$$
$$\lim_{n \to \infty} (a_n \cdot b_n) = \left(\lim_{n \to \infty} a_n\right) \cdot \left(\lim_{n \to \infty} b_n\right)$$
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \text{ provided that } \lim_{n \to \infty} b_n \neq 0$$

$$a_n \leq b_n$$
 for sufficiently large $n \implies \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$

Proof

Let $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = M$. $\lim_{n \to \infty} (a_n + b_n) = L + M$

By Proposition 1, we may assume L = M = 0. Given $\epsilon > 0$, there exist N_1, N_2 such that

$$\forall n_1 > N_1, n_2 > N_2, \quad |a_{n_1} - 0|, |b_{n_2} - 0| < \frac{\epsilon}{2}$$

By taking $N = \max\{N_1, N_2\}$, for any n > N

$$|a_n + b_n| \le |a_n| + |b_n| < \epsilon$$

 $\lim_{n \to \infty} (a_n - b_n) = L - M$

As before, we may assume L = M = 0.

$$\lim_{n \to \infty} (-b_n) = 0 \iff \lim_{n \to \infty} |-b_n| = 0 \iff \lim_{n \to \infty} b_n = 0$$

Therefore,

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} (a_n + (-b_n)) = 0 + 0$$

 $\lim_{n \to \infty} (a_n b_n) = LM$

By definition, there exist N such that

$$\forall n > N, \quad |b_n - M| < 1 \implies |b_n| < |M| + 1$$

Thus, for any n > N,

$$\begin{array}{rcl}
0 &\leq & |a_n b_n - LM| \\
&= & |a_n b_n - L b_n + L b_n - LM| \\
&\leq & |a_n - L| |b_n| + |L| |b_n - M| \\
&\leq & |a_n - L| (|M| + 1) + |L| |b_n - M|
\end{array}$$

and the result follows from squeeze theorem.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M} \text{ provided that } M \neq 0$$

Obviously, it's enough to show $\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{M}$ if $M \neq 0$. Also, we may assume M = 1. By definition, there exists N such that

$$\forall n > N, \quad |b_n - 1| < \frac{1}{2} \implies \frac{1}{2} < b_n < \frac{3}{2} \implies \frac{1}{|b_n|} < 2$$

Therefore, for any n > N,

$$0 \le \left|\frac{1}{b_n} - 1\right| = \frac{1}{|b_n|}|b_n - 1| < 2|b_n - 1|$$

and the result follows from squeeze theorem.

 $\frac{a_n \leq b_n \quad \text{for sufficiently large } n \implies \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n}{\text{Let } c_n = b_n - a_n. \text{ It suffices to show } \lim_{n \to \infty} c_n = L - M \geq 0. \text{ Assume not.}}$

$$\exists N \in \mathbb{Z}^+, \forall n > N, \quad |c_n - (L - M)| < \frac{|L - M|}{2}$$

So, for some sufficiently large n,

$$0 \le c_n < (L - M) + \frac{|L - M|}{2} = -\frac{|L - M|}{2} < 0$$

which is a contradiction.

Theorem 3: Monotone Convergence Theorem

Suppose $(a_n)_{n \in \mathbb{Z}^+}$ is a sequence which is either

increasing and bounded above for sufficiently large n

or

decreasing and bounded below for sufficiently large n

Then, $\lim_{n \to \infty} a_n$ exists.

Proof

Suppose $(a_n)_{n \in \mathbb{Z}^+}$ is a sequence which is increasing and bounded above when n > N. Let $S = \{a_n \mid n > N\}$. Since S is bounded above,

 $\sup S = L$

for some $L \in \mathbb{R}$. Given $\epsilon > 0$, assume $S \cap (L - \epsilon, L] = \emptyset$. Then,

S is bounded above by
$$L - \epsilon \implies L = \sup S \leq L - \epsilon$$
,

which is absurd. Thus, we know that $a_m \in S \cap (L - \epsilon, L]$ for some m > N.

As a_n is increasing when n > N, for all n > m,

$$L - \epsilon < a_m \le \sup S = L \implies |a_n - L| < \epsilon$$

and we are done.

If $(a_n)_{n \in \mathbb{Z}^+}$ is decreasing and bounded below for sufficiently large n, then $(-a_n)_{n \in \mathbb{Z}^+}$ is increasing and bounded above for sufficiently large n.

1.2 Limits of functions

$$\begin{array}{l} \hline \textbf{Definition 2 (limit at infinity)}\\ \hline \text{For a function } f(x), \text{ we say that } \lim_{x \to \infty} f(x) = L (\lim_{x \to -\infty} f(x) = L) \text{ if}\\ & \forall \epsilon > 0, \exists N \in \mathbb{R}, \forall x > N(x < N), \quad |f(x) - L| < \epsilon\\ \hline \text{We say that } \lim_{x \to \infty} f(x) = \infty (\lim_{x \to -\infty} f(x) = \infty) \text{ if}\\ & \forall M \in \mathbb{R}, \exists N \in \mathbb{R}, \forall x > N(x < N), \quad f(x) > M\\ \hline \text{We say that } \lim_{x \to \infty} f(x) = -\infty (\lim_{x \to -\infty} f(x) = -\infty) \text{ if}\\ & \forall M \in \mathbb{R}, \exists N \in \mathbb{R}, \forall x > N(x < N), \quad f(x) < M \end{array}$$

 $\begin{array}{l} \hline \textbf{Definition 3 (limit at a point)}\\ \hline \textbf{For a function } f(x) \text{ and a point } a \in \mathbb{R}, \text{ we say that } \lim_{x \to a} f(x) = L \text{ if}\\ & \forall \epsilon > 0, \exists \delta > 0, \forall x \text{ such that } 0 < |x - a| < \delta, \quad |f(x) - L| < \epsilon\\ \hline \textbf{We say that } \lim_{x \to a} f(x) = \infty \text{ if}\\ & \forall M \in \mathbb{R}, \exists \delta > 0, \forall x \text{ such that } 0 < |x - a| < \delta, \quad f(x) > M\\ \hline \textbf{We say that } \lim_{x \to a} f(x) = -\infty \text{ if}\\ & \forall M \in \mathbb{R}, \exists \delta > 0, \forall x \text{ such that } 0 < |x - a| < \delta, \quad f(x) < M \end{array}$

 $\begin{array}{l} \hline \textbf{Definition 4 (one-sided limit)}\\ \hline \textbf{For a function } f(x) \text{ and a point } a \in \mathbb{R}, \text{ we say that } \lim_{x \to a^+} f(x) = L (\lim_{x \to a^-} f(x) = L) \text{ if}\\ \forall \epsilon > 0, \exists \delta > 0, \forall x \text{ such that } a < x < a + \delta(a - \delta < x < a), \quad |f(x) - L| < \epsilon\\ \hline \textbf{We say that } \lim_{x \to a^+} f(x) = \infty (\lim_{x \to a^-} f(x) = \infty) \text{ if}\\ \forall M \in \mathbb{R}, \exists \delta > 0, \forall x \text{ such that } a < x < a + \delta(a - \delta < x < a), \quad f(x) > M\\ \hline \textbf{We say that } \lim_{x \to a^+} f(x) = -\infty (\lim_{x \to a^-} f(x) = -\infty) \text{ if}\\ \forall M \in \mathbb{R}, \exists \delta > 0, \forall x \text{ such that } a < x < a + \delta(a - \delta < x < a), \quad f(x) < M\\ \hline \textbf{We say that } \lim_{x \to a^+} f(x) = -\infty (\lim_{x \to a^-} f(x) = -\infty) \text{ if}\\ \forall M \in \mathbb{R}, \exists \delta > 0, \forall x \text{ such that } a < x < a + \delta(a - \delta < x < a), \quad f(x) < M\\ \hline \textbf{Proposition 4}\\ \hline \textbf{For any function } f(x), \end{array}$

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$$

The same hold if L is replaced by ∞ or $-\infty$.

<u>Proof</u>

Straightly from the definitions.

Theorem 4: Sequential criterion For any function f(x), $\lim_{x \to a} f(x) = L \iff \forall (a_n)_{n \in \mathbb{Z}^+} \text{ such that } a_n \neq a \text{ and } \lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} f(a_n) = L$ The same hold if a or L is replaced by ∞ or $-\infty$. Moreover, $\lim_{x \to a^+} f(x) = L \iff$ $\forall \text{ strictly decreasing } (a_n)_{n \in \mathbb{Z}^+} \text{ such that } \lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} f(a_n) = L,$ $\lim_{x \to a^-} f(x) = L \iff$

 $\forall \text{strictly increasing } (a_n)_{n \in \mathbb{Z}^+} \text{ such that } \lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} f(a_n) = L$ The same hold if L is replaced by ∞ or $-\infty$.

<u>Proof</u>

For $\lim_{x \to a} f(x) = L$:

Given $\epsilon > 0$, there exists $\delta > 0$ such that

 $0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$

Since $\lim_{n \to \infty} a_n = a$,

$$\exists N \in \mathbb{Z}^+, \forall n > N, \quad |a_n - a| < \delta$$

As $a_n \neq a$,

$$0 < |a_n - a| < \delta \implies |f(a_n) - L| < \epsilon$$

By definition, $\lim_{n \to \infty} f(a_n) = L$.

\Leftarrow

Assume the contrary:

$$\exists \epsilon_0 > 0, \forall \delta > 0, \exists x \text{ such that } 0 < |x - a| < \delta, \quad |f(x) - L| \ge \epsilon_0$$

Then, for each $n \in \mathbb{Z}^+$, we can pick a_n such that

$$0 < |a_n - a| < \frac{1}{n}$$
 and $|f(a_n) - L| \ge \epsilon_0$

to form a sequence $(a_n)_{n \in \mathbb{Z}^+}$. By construction, $a_n \neq a$. In addition, $\lim_{n \to \infty} a_n = a$ by squeeze theorem. By the premise, we should have $\lim_{n \to \infty} f(a_n) = L$.

By taking $\epsilon = \frac{\epsilon_0}{2}$,

$$\exists N \in \mathbb{Z}^+, \forall n > N, \quad |f(a_n) - L| < \frac{\epsilon_0}{2}$$

In particular,

$$\epsilon_0 \le |f(a_{N+1}) - L| < \frac{\epsilon_0}{2}$$

which is impossible.

The arguments for

$$\lim_{x \to a^+} f(x) = L, \quad \lim_{x \to a^-} f(x) = L, \quad \lim_{x \to \infty} f(x) = L, \quad \lim_{x \to -\infty} f(x) = L$$

are similar. The sequences constructed in " $\underline{\longleftarrow}$ " would be given by

$$0 < a_n - a < \min\left\{\frac{1}{n}, a_{n-1} - a\right\}, 0 < a - a_n < \min\left\{\frac{1}{n}, a - a_{n-1}\right\}, a_n > n, a_n < -n$$

respectively.

For $\lim_{x \to a} f(x) = \infty$: \implies

Given $M \in \mathbb{R}$, there exists $\delta > 0$ such that

$$0 < |x - a| < \delta \implies f(x) > M$$

Since $\lim_{n \to \infty} a_n = a$,

 $\exists N \in \mathbb{Z}^+, \forall n > N, \quad |a_n - a| < \delta$

As $a_n \neq a$,

$$0 < |a_n - a| < \delta \implies f(a_n) > M$$

By definition, $\lim_{n \to \infty} f(a_n) = \infty$.

Assume the contrary:

$$\exists M_0 \in \mathbb{R}, \forall \delta > 0, \exists x \text{ such that } 0 < |x - a| < \delta, \quad f(x) \le M_0$$

Then, for each $n \in \mathbb{Z}^+$, we can pick a_n such that

$$0 < |a_n - a| < \frac{1}{n}$$
 and $f(a_n) \le M_0$

to form a sequence $(a_n)_{n \in \mathbb{Z}^+}$. By construction, $a_n \neq a$. In addition, $\lim_{n \to \infty} a_n = a$ by squeeze theorem. By the premise, we should have $\lim_{n \to \infty} f(a_n) = \infty$. By taking $M = M_0 + 1$,

$$\exists N \in \mathbb{Z}^+, \forall n > N, \quad f(a_n) > M_0 + 1$$

In particular,

$$M_0 \ge f(a_{N+1}) > M_0 + 1$$

which is impossible.

The arguments for

$$\lim_{x \to a^+} f(x) = \infty, \quad \lim_{x \to a^-} f(x) = \infty, \quad \lim_{x \to \infty} f(x) = \infty, \quad \lim_{x \to -\infty} f(x) = \infty$$

are similar. The sequences constructed in " $\underline{\longleftarrow}$ " would be given by

$$0 < a_n - a < \min\left\{\frac{1}{n}, a_{n-1} - a\right\}, 0 < a - a_n < \min\left\{\frac{1}{n}, a - a_{n-1}\right\}, a_n > n, a_n < -n$$

respectively.

Observe that

$$\lim_{x \to a} f(x) = -\infty \quad \iff \quad \lim_{x \to a} (-f(x)) = \infty \quad \text{(clear from definitions)}$$
$$\iff \quad \forall (a_n)_{n \in \mathbb{Z}^+} \text{ such that } a_n \neq a \text{ and } \lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} (-f(a_n)) = \infty$$
$$\iff \quad \forall (a_n)_{n \in \mathbb{Z}^+} \text{ such that } a_n \neq a \text{ and } \lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} f(a_n) = -\infty$$

Similarly, the equivalence regarding

$$\lim_{x \to a^+} f(x) = -\infty, \quad \lim_{x \to a^-} f(x) = -\infty, \quad \lim_{x \to \infty} f(x) = -\infty, \quad \lim_{x \to -\infty} f(x) = -\infty$$
also hold.

Theorem 5

Suppose f(x) and g(x) are two functions such that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist. $\forall c \in \mathbb{R},$

$$\begin{split} \lim_{x \to a} (f(x) \pm g(x)) &= \left(\lim_{x \to a} f(x)\right) \pm \left(\lim_{x \to a} g(x)\right) \\ \lim_{x \to a} (f(x) \cdot g(x)) &= \left(\lim_{x \to a} f(x)\right) \cdot \left(\lim_{x \to a} g(x)\right) \\ \lim_{x \to a} \frac{f(x)}{g(x)} &= \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ provided that } \lim_{x \to a} g(x) \neq 0 \\ \lim_{x \to a} (cf(x)) &= c \left(\lim_{x \to a} f(x)\right) \end{split}$$

 $f(x) \le g(x)$ around a (not necessarily at a) $\implies \lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$

(That is, $\exists \delta > 0, \forall x \text{ such that } 0 < |x - a| < \delta, \quad f(x) \le g(x)$) The same hold if a is replaced by a^+, a^-, ∞ or $-\infty$.

Proof

Suppose $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$. Given sequence $(a_n)_{n\in\mathbb{Z}^+}$ such that $a_n \neq a$ and $\lim_{n\to\infty} a_n = a$, by sequential criterion,

$$\lim_{n \to \infty} f(a_n) = L \quad \text{and} \quad \lim_{n \to \infty} g(a_n) = M \implies \lim_{n \to \infty} (f(a_n) + g(a_n)) = L + M$$

Hence, by sequential criterion,

$$\lim_{x \to a} (f(x) + g(x)) = L + M$$

The others can be handled similarly.

Proposition 5
For any function f(x),(a) $\lim_{x \to a} f(x) = L \iff \lim_{x \to a} (f(x) - L) = 0$ (b) $\lim_{x \to a} f(x) = 0 \iff \lim_{x \to a} |f(x)| = 0$ The same hold if a is replaced by a^+, a^-, ∞ or $-\infty$.Proof

By sequential criterion.

Theorem 6: Squeeze Theorem (Sandwich Theorem)

Suppose

$$g(x) \le f(x) \le h(x)$$
 around $x = a$ (not necessarily at a)

Then,

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L \implies \lim_{x \to a} f(x) = L$$

Similarly,

$$\lim_{x \to a} g(x) = \infty \text{ (DNE)} \implies \lim_{x \to a} f(x) = \infty \text{ (DNE)}$$
$$\lim_{x \to a} h(x) = -\infty \text{ (DNE)} \implies \lim_{x \to a} f(x) = -\infty \text{ (DNE)}$$

The same hold if a is replaced by a^+, a^-, ∞ or $-\infty$.

Proof

Suppose

$$\forall x \text{ such that } 0 < |x - a| < \epsilon_0, \quad g(x) \le f(x) \le h(x)$$

Given sequence $(a_n)_{n \in \mathbb{Z}^+}$ such that $a_n \neq a$ and $\lim_{n \to \infty} a_n = a$,

$$\exists N \in \mathbb{Z}^+, \forall n > N, \quad 0 < |a_n - a| < \epsilon_0 \implies g(a_n) \le f(a_n) \le h(a_n)$$

by sequential criterion and squeeze theorem for sequences,

$$\lim_{n \to \infty} g(a_n) = \lim_{n \to \infty} h(a_n) = L \implies \lim_{n \to \infty} f(a_n) = L$$

Hence, by sequential criterion,

$$\lim_{x \to a} f(x) = L$$

The others can be handled similarly.