Part 2: For a general piecewise smooth conve

$$C = C_{1} \cup C_{2} \cup \cdots \cup C_{k}$$
(= $C_{1} + C_{2} + \cdots + C_{k}$
in order to indicate
$$A = A_{0}$$

$$A_{2} \quad C_{3}$$

$$B = A_{4}$$

$$A_{1} \quad C_{2} \quad C_{4}$$

$$A_{2} \quad C_{3}$$

$$B = A_{4}$$

$$A_{1} \quad C_{2} \quad C_{4}$$

$$A_{2} \quad C_{3}$$

$$B = A_{4}$$

$$A_{1} \quad C_{2} \quad C_{4}$$

$$A_{2} \quad C_{3}$$

$$B = A_{4}$$

$$A_{1} \quad C_{2} \quad C_{4}$$

$$A_{2} \quad C_{3}$$

$$B = A_{4}$$

$$A_{1} \quad C_{2} \quad C_{4}$$

$$A_{2} \quad C_{3}$$

$$B = A_{4}$$

$$A_{1} \quad C_{2} \quad C_{4}$$

$$A_{2} \quad C_{3}$$

$$B = A_{4}$$

$$A_{1} \quad C_{2} \quad C_{3}$$

$$B = A_{4}$$

$$A_{1} \quad C_{2} \quad C_{3}$$

$$B = A_{4}$$

$$A_{2} \quad C_{3}$$

$$B = A_{4}$$

$$A_{3} \quad C_{4}$$

$$C_{4} \quad A_{4} \quad A_$$

Thm9 let J2 C Rⁿ, n=2 or 3, be open and connected.
F is a continuous vectar field on J2. Then the
following are equivalent.
(a) ∃ a c¹ function f: R > R such that
E = ⊽f
(b)
$$\oint_C F \cdot dr = 0$$
 along any closed curve C on J2.
(c) F is conservative.

Pf: "(9)
$$\Rightarrow$$
(b)"
If f is C' and $\vec{F} = \vec{\nabla} f$
and $\vec{F} : [a, b] \rightarrow JC$ parametrizes C' (any closed curve)
C' closed \Rightarrow $\vec{F}(a) = \vec{F}(b) = A$
Fundamental Thus of Line Integral \Rightarrow
 $\oint_{C} \vec{F} \cdot d\vec{r} = f(\vec{F}(b)) - f(\vec{F}(a))$
 $= f(A) - f(A) = 0$.
"(b) \Rightarrow (c)" Suppose C₁, C₂ are injected curves with
starting point A and end point B.

Then
$$C_1 \cup (-C_2)$$

 $= C_1 - C_2$ (a letter notation)
is an intented closed curve.
 A
Then by (b)
 $O = \oint \vec{F} \cdot d\vec{r} = \oint \vec{F} \cdot d\vec{r} + \oint \vec{F} \cdot d\vec{r}$
 $C_1 - C_2$
 $= \oint_{C_1} \vec{F} \cdot d\vec{r} - \oint_{C_2} \vec{F} \cdot d\vec{r}$
Since $C_1 = C_2$ are arbitrary, \vec{F} is conservative.
"(c) => (a)"
Assume $n=2$ for sumplicity (other dimensions are similar)
Let $\vec{F} = Mi + Nj$ are conservative.
Fix a point $A \in IZ$
Then for any point
 $B \in R$, define $(\vec{F} is conservative + \vec{A})$
 $f(\vec{b}) = \int_{A}^{B} \vec{F} \cdot \vec{T} ds = \frac{conservative}{conservative}, f(\vec{B})$ is well-defined.

$$\frac{f(B+\epsilon_i) - f(B)}{\epsilon} = \frac{1}{\epsilon} \int_{L} \vec{F} \cdot d\vec{r} \qquad \begin{array}{c} \text{parametize } L & L \\ B+t_i, t \in [0, \epsilon] \\ B=(x,y) \end{array}$$

$$= \frac{1}{\epsilon} \int_{0}^{\epsilon} M(x+t,y) dt \qquad B=(x,y)$$

$$= M(x,y) \quad (by MVF + M is cartinous)$$

$$= M(x,y) \quad (by MVF + M is cartinous)$$

$$(Fis cartinous)$$

, -,

Similarly
$$\frac{\partial f}{\partial y}(B) = N(x,y)$$
 by consider:
So $\forall f = \vec{F}$
Since \vec{F} is continuous,
 $M = \frac{\partial f}{\partial x} = N = \frac{\partial f}{\partial y}$ are
Continuous
 $= \int f \in \mathbb{C}^{1}$

Remark: The function
$$f$$
 in (a) of Thm 9 is called the
potential function of \vec{F} . It is unique up to
an additive constant:
 $\vec{\nabla}(f+c) = \vec{F}$, \forall const. c.

$$\frac{\text{Corollary (to Thm 9)}}{\text{let } \overrightarrow{F} \text{ be conservative and } \underbrace{C}^{1} \qquad \text{curvet}^{\text{bd}} \qquad \text{open}}{\text{open}}$$

$$= \sum_{n=3}^{n} \overrightarrow{F} = Mi + Nj + Lk \quad (on T \in \mathbb{R}^{3})$$

$$= \sum_{n=3}^{n} \overrightarrow{F} = Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= \sum_{n=2}^{n} \overrightarrow{F} = Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= \sum_{n=2}^{n} \overrightarrow{F} = Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= \sum_{n=2}^{n} \overrightarrow{F} = Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi \quad (on T \in \mathbb{R}^{3})$$

$$= Mi + Nj \quad (on T \in \mathbb{R}^{3})$$

$$= Mi \quad (on T \in \mathbb{R}^{3})$$

eg 42: Show that
$$F(x,y) = \hat{x} + x\hat{j}$$
 is not conservative $\hat{u} \mathbb{R}^2$.
Solu: $(F \in C^{\infty})$ $M \equiv 1$ $\hat{y} = 0$ $\hat{y} = 1$
 $N = \chi$ $\hat{y} = 1$
By Corto Thing, F is not conservative.

I

Remark (Important)
For a C¹ vector field
$$\vec{F} = M\vec{i} + N\vec{j} + L\vec{k}$$

 \vec{F} conservative $\underbrace{CortoThm9}_{\vec{i}}$ M, N, L satisfy the system
of PDEs in the CortoThm9
Averes: NOT TRUE ingeneral, needs extra condition on
the clomain SZ ("connected" is not enough)

eg43 Consider the vector field

$$\vec{F} = \frac{-Y}{X^2 + y^2} \cdot \hat{i} + \frac{X}{X^2 + y^2} \cdot \hat{j}$$
and the domains $J_2 = [R^2 \setminus \{(X,0) \in [R^2 : X \le 0\}$
 $J_2 = [R^2 \setminus \{(0,0)\}$
 $J_2 = doesn't include$
 $f_2 = doesn't include$
 $f_3 = doesn't include$
 $f_4 = nigin$
 $f_3 = doesn't include f f_4 = nigin$

In polar conditates

$$\vec{F} = -\frac{Ain\theta}{r}\hat{i} + \frac{ca\theta}{r}\hat{j}$$

$$\Rightarrow \cdot \vec{F} \text{ rotates around the e}$$

$$(-|\vec{F}| = \frac{1}{r} \rightarrow +\infty \text{ as } r \rightarrow \infty$$

$$\cdot \cdot |\vec{F}| = \frac{1}{r} \rightarrow +\infty \text{ as } r \rightarrow \infty$$

$$\cdot \cdot |\vec{F}| = \frac{1}{r} \rightarrow +\infty \text{ as } r \rightarrow \infty \Rightarrow \vec{F} \text{ cannot be extended}$$

$$to a C' vector field on $|R^2|.$$$

Besides (0,0),
$$\vec{F}$$
 is C¹ and
 \vec{F} is C¹ on Σ_1 , and also
 \vec{F} is C¹ on Σ_2 .
Questions : Is \vec{F} conservative on Σ_1 ?
 \vec{Is} \vec{F} conservative on Σ_2 ?.
Sole: (1) For Σ_1 , and (x,y) can be expressed in
polar correlates with
 $\begin{cases} r > 0 \\ -\pi < 0 < T \\ conservative. \end{cases}$
Define $f(x,y) = \theta$ "smooth" on Σ_1 (check!)

Then
$$\begin{cases} \frac{25}{2X} = \frac{20}{2X} = -\frac{42i\theta}{Y} \\ \frac{25}{2Y} = \frac{20}{2y} = \frac{62\theta}{Y} \\ \frac{25}{2Y} = \frac{20}{2y} = \frac{62\theta}{Y} \\ \frac{25}{2Y} = \frac{25}{2y} = \frac{2}{7} = \sqrt{7} \\ \frac{25}{7} = \frac{25}{2X} = \frac{25}{7} = \sqrt{7} \\ \frac{25}{7} = \frac{25}{2X} = \frac{25}{7} = \sqrt{7} \\ \frac{25}{7} = \frac{25}{2X} = \frac{2}{7} = \sqrt{7} \\ \frac{25}{7} = \frac{25}{2X} = \frac{2}{7} = \sqrt{7} \\ \frac{25}{7} = \frac{25}{2X} = \frac{2}{7} = \frac{1}{7} \\ \frac{1}{7} \frac$$

The $10 \Rightarrow$ existence of potential function f.