eg 40: Let
$$\vec{F} = (x-y)\hat{i} + x\hat{j}$$

 $C : x^2 + y^2 = 1$
Find the flow (anti-clockwisely) along C and
flux alross C .
Soln: Let $\vec{F}(t) = \cos t \hat{i} + \operatorname{aut} \hat{j}$, $0 \le t \le 2T$
(note: correct aientation) (chech!)
Then $flow = \oint_{C} \vec{F} \cdot \hat{f} \, ds = \oint_{C} \vec{F} \cdot d\vec{r}$
 $= \int_{0}^{2T} [(\cos t - \operatorname{aut} t)\hat{i} + \cos t\hat{j}] \cdot [-\operatorname{aut} t\hat{i} + \cos t\hat{j}] \, dt$
 $= \cdots = 2T$ (chech!)

$$flux = \oint_{C} \vec{F} \cdot \hat{n} ds$$

$$= \oint_{C} M dy - N dx \quad (uith anti-clockwise)$$

$$= \int_{0}^{2T} (ceot - aint) d(aint) - ceot d(cot)$$

$$= \int_{0}^{2T} (ceot - aint) d(aint) - ceot d(cot)$$

$$= \int_{0}^{2T} (aot - aint) cot + cot aint] dt$$

$$= \dots = \Pi \quad (chech!)$$

Remark: If C is an oriented curve, then denote by
"-C" the mented unve with opposite mentation

. If f is a scalar function

$$\int_C f ds = \int_C f ds$$
 as "ds" is not mented
just "lempth"
. If F is a vector field

flow
$$\int_{C} \vec{E} \cdot \hat{T} ds = -\int_{-C} \vec{E} \cdot \hat{T} ds$$

$$More precise formula: \quad ``\hat{T}fu - C''$$

$$\int_{C} \vec{E} \cdot \hat{T}_{C} ds = -\int_{-C} \vec{E} \cdot \hat{T}_{-C} ds$$

$$= But fu flex$$

$$\int_{C} \vec{E} \cdot \hat{\eta} ds = \oint_{-C} \vec{E} \cdot \hat{\eta} ds$$

$$= \oint_{-C} \vec{E} \cdot \hat{\eta} ds$$

$$= \oint_{-C} \vec{E} \cdot \hat{\eta} ds$$

n always outward

Summary :

scalar f	S¿ fors indep. of cientation	f, ds trave no direction
vecta È		7 depends
flow	SzÉ. 7ds depends on mientation	on direction
flux	$\int_{\mathcal{C}} \vec{F} \cdot \vec{n} ds$ indep. of orientation	n always

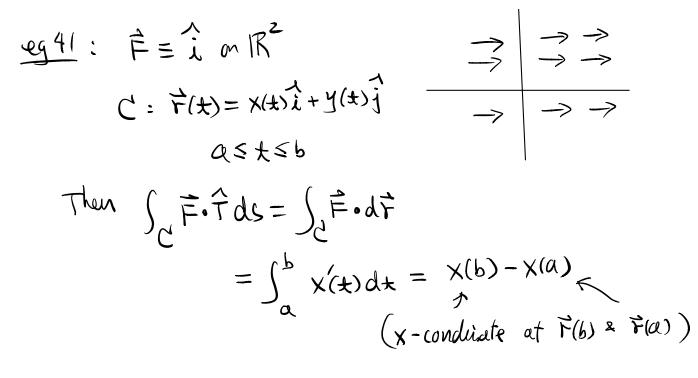
٦

Conservation Vector Field
Ref 14: let
$$SZ \subseteq R^n$$
, n=2 or 3, be open. A vector field \vec{F}
defined on SZ is said to be conservative if
 $S_{c}\vec{F}\cdot\vec{T}ds$ (= $\int_{c}\vec{F}\cdot d\vec{r}$) along an oriented convert d in Z
depends only on the starting point and end point of d .

Note: This is usually referred as "path independent".
i.e. If C1 & C2 are are are are divided unves with the same
starting point A and end point B,
then

$$\int_{C_1} \vec{F} \cdot \vec{T} ds = \int_{C_2} \vec{F} \cdot \vec{T} ds$$

(so the value only depends on the points A & B (a direction))
Notation: If \vec{F} is conservative, we sometimes write
 $\begin{bmatrix} \int_{A}^{B} \vec{F} \cdot \vec{T} ds \end{bmatrix}$ to devote the common value of
 $\int_{C_1}^{B} \vec{F} \cdot \vec{T} ds \end{bmatrix}$ to devote the common value of
 $\int_{C_1}^{B} \vec{F} \cdot \vec{T} ds = \int_{C_2}^{C_2} \vec{F} \cdot \vec{T} ds$ along any arented
curve C from A to B.



Thus (Fundamental Theorem of Line Integral)
Let
$$f$$
 be a C' function on an open set $SZCIR^n$, $n=20.3$,
and $\hat{F} = \overline{\nabla}f$ be the gradient vector field of f . Then
 f any piecewise smooth aiented curve C on SZ with
starting part A and end point B,
 $\int_C \hat{F} \cdot \hat{T} dS = f(B) - f(A)$

$$Pf: Pant 1 Assume (2 is a smooth curve parametrizedby $F(t)$, $a \le t \le b$
$$F(t), a \le t \le b$$

$$A \xrightarrow{c} smooth$$

Then $\int_{C} \vec{F} \cdot \vec{T} ds = \int_{C} \vec{F} \cdot d\vec{r}$
$$= \int_{a}^{b} \vec{F}(\vec{F}(t)) \cdot \vec{F}(t) dt$$

$$= \int_{a}^{b} \vec{\nabla} f(\vec{F}(t)) \cdot \vec{F}(t) dt$$

$$= \int_{a}^{b} \vec{\nabla} f(\vec{F}(t)) \cdot \vec{F}(t) dt$$$$

