Pf of Thmb:

I

Then b: Suppose
$$
\Phi: (\begin{array}{c} u \\ v \end{array}) \mapsto (\begin{array}{c} x \\ y \end{array})
$$
 is a diffeomaphisin (1-1, onto, st.)

\nthen d. $\Phi^{-1} \in C^{1}$ and $\Phi^{-1} \in C^{1}$ are equal to a region G (closed and bounded)

\nin the uv -plane (except possibly on the boundary). Suppose

\n $f(x,y)$ is continuous on R , then

\n $\iint_S f(x,y) dx dy = \iint_S f \circ \phi(u, v) \left| \frac{\partial(x,y)}{\partial(y,0)} \right| du dv$

Step 0 : We need better notations and terminology.
\nIn this proof, well denote
\n
$$
D\varphi = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}
$$
\nthe differential α

and
$$
\frac{\partial(x,y)}{\partial(u,v)} = \partial(t \ D \phi)
$$
 the Jacobian determinant
We also uu "iudix" notations for the variables :
(x₁, x₂) or $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ [instead of (x,y) a $\begin{pmatrix} x \\ y \end{pmatrix}$]

Step 1: let $F = \begin{pmatrix} x \\ x \end{pmatrix} \Rightarrow \begin{pmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{pmatrix}$ $\frac{var}{var} \cdot \begin{pmatrix} a & b & c \end{pmatrix} \cdot f$ \n
with $\frac{\partial (f_1, f_2)}{\partial (x_1, x_2)} \neq 0$ at f . Then, near the point f .
F: $C(u)$ let $U(CU) \cap C$ be defined as $F = H \circ K$
with $H, K \circ f$ the forms
$K: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} k(x_1, x_2) \\ x_2 \end{pmatrix} \stackrel{dudte}{=} \begin{pmatrix} g_1 \\ g_2 \end{pmatrix}$
$\begin{pmatrix} or \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} k(x_1, x_2) \\ x_1 \end{pmatrix} = \begin{pmatrix} g_1 \\ g_2 \end{pmatrix}$
and $H = \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} \mapsto \begin{pmatrix} g_1 \\ k(x_1, y_2) \end{pmatrix}$,
such that $\begin{pmatrix} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} & \frac{1}{2} \cdot \frac{1}{2$

Case 1
$$
\frac{3f_1}{\partial x_1}(\rho) \neq 0
$$

\nDefine $f(x_1, x_2) = f_1(x_1, x_2)$ near ρ .

\nThen, the transformation $|x: \binom{x_1}{x_1} \mapsto \binom{y_1 = f_1(x_1, x_2)}{y_2 = x_1}$.

\nSo, of the required f - and f

$$
Dk = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_3} & \frac{\partial y_2}{\partial x_3} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f_1}{\partial x_1} & \frac{\partial^2 f_1}{\partial x_2} \\ 0 & 1 \end{pmatrix}
$$

\n
$$
\Rightarrow \quad \text{det } DK (p) = \frac{\partial^2 f_1}{\partial x_1} (p) \neq 0
$$

\n
$$
\Rightarrow \quad \text{det } DK (p) = \frac{\partial^2 f_1}{\partial x_1} (p) \neq 0
$$

\n
$$
\left(\frac{x_1}{x_2}\right) = \frac{x_1}{x_1} \left(\frac{y_1}{y_2}\right) = \frac{y_1}{x_2} \qquad \text{(since $x_2 = y_2$)}
$$

\n
$$
\left(\frac{x_1}{x_1}\right) = \frac{x_1}{y_1} \qquad \text{(that $x_2 = y_2$)}
$$

\n
$$
\left(\frac{x_1}{y_2}\right) = \frac{y_1}{y_2} \qquad \text{(that $x_3 = y_3$)}
$$

\n
$$
\left(\frac{x_1}{y_3}\right) = \frac{y_2}{y_3} \qquad \text{(that $x_4 = y_3$)}
$$

\n
$$
\left(\frac{x_1}{y_3}\right) = \frac{y_2}{y_3} \qquad \text{(that $x_5 = y_3$)}
$$

\n
$$
\Rightarrow \quad \frac{y_3}{y_3} \qquad \frac{y_3}{y_4} = 1 \qquad \text{and} \qquad \frac{y_3}{y_1} \frac{y_3}{y_2} \qquad \text{(at $x_6 = y_3$)}
$$

\n
$$
\Rightarrow \quad \frac{y_3}{y_3} \qquad \frac{y_4}{y_4} = 1 \qquad \text{and} \qquad \frac{y_3}{y_1} \frac{y_4}{y_4} \qquad \text{(at $x_7 = y_3$)}
$$

\n
$$
\Rightarrow \quad \frac{y_4}{y_3} \qquad \text{and} \qquad \frac
$$

and
$$
H = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} z_1 = y_1 \\ z_2 = h(y_1, y_2) \end{pmatrix}
$$

H
$$
\hat{\omega}
$$
 of the required few.
\n
$$
DH = \begin{pmatrix} \frac{\partial^2 H}{\partial y_1} & \frac{\partial^2 H}{\partial y_2} \\ \frac{\partial^2 L}{\partial y_1} & \frac{\partial^2 L}{\partial y_2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{\partial h}{\partial y_1} & \frac{\partial h}{\partial y_2} \end{pmatrix}
$$

$$
d\theta + DH = \frac{\partial h}{\partial y_z} = \frac{\partial f_z}{\partial x_i} \frac{\partial x_i}{\partial y_z} + \frac{\partial f_z}{\partial x_z} \frac{\partial x_z}{\partial y_z}
$$

$$
= \frac{\partial f_z}{\partial x_i} \cdot \frac{\partial g}{\partial y_z} + \frac{\partial f_z}{\partial x_z} \cdot 1
$$

$$
= \frac{\partial f_2}{\partial x_1} \left(-\frac{\partial g}{\partial y_1} \frac{\partial f_1}{\partial x_2} \right) + \frac{\partial f_2}{\partial x_2}
$$

$$
= -\frac{\frac{\partial f_2}{\partial x_1} \cdot \frac{2f_1}{\partial x_2}}{\frac{\partial f_1}{\partial x_1}} + \frac{\partial f_2}{\partial x_2}
$$

$$
= \frac{1}{\frac{\partial f_1}{\partial x_1}} \left[\frac{\partial f_1}{\partial x_1} \frac{\partial f_2}{\partial x_2} - \frac{\partial f_1}{\partial x_2} \frac{\partial f_2}{\partial x_1} \right]
$$

$$
= \frac{1}{\frac{\partial f_1}{\partial x_1}} \left[\frac{\partial f_1}{\partial x_1} \frac{\partial f_2}{\partial x_2} + 0 \right]
$$

So It and K satisfy the requirements and we have $HoK(X_{1}) = H(\begin{matrix} Y_{1} \\ Y_{2} \end{matrix}) = (\begin{matrix} Y_{1} \\ Y_{1} \end{matrix})$

$$
\iint_{R_2} f(y_1, y_2) dy_1 dy_2 = \iint_{R_1} f \circ K(x_1, x_2) \left| \frac{d\theta}{d\theta} DK \right| dx_1 dx_2
$$

=
$$
\iint_{R_1} f \circ K(x_1, x_2) \left| \frac{\partial (y_1, y_2)}{\partial (x_1, x_2)} \right| dx_1 dx_2
$$

Remark: Step 2 also holds for the other 2 types of
\ntrromsfomations in Step 1. (Ex!)

\n9.5 By additivity property of integrations and cutting
\nR, (and correspondingly
$$
R_2 = K(R_1)
$$
) into small
\nregions, we may assume
\n $R_1 = [a, b] \times [c, d] = \{a \leq K_1 \leq b, C \leq K_2 \leq d\}$

\nFor any fixed $y_2 = X_2$
\n $y_1 = k(x_1, x_2) = k(x_1, y_2)$ for $a \leq K_1 \leq b$

\ncan be regarded as a transformation of 1 vanable
\nNote that $\frac{2y_1}{2x_1} = \frac{2k}{2x_1} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2k}{2} \cdot \frac{1}{2} \cdot \frac$

and change of variable formula in 1-variable implies
\n
$$
\int_{k(a,y_{2})}^{k(b,y_{2})} f(y_{1},y_{2}) dy_{1} = \int_{a}^{b} f(k(x_{1},y_{2}), y_{2}) \frac{dy_{1}}{dx_{1}} dx_{1}
$$
\n
$$
= \int_{a}^{b} f(k(x_{1},x_{2}),x_{2}) \frac{dy_{1}}{dx_{1}} dx_{1} \quad (s x_{2}y_{2})
$$
\n
$$
= \int_{a}^{b} f(k(x_{1},x_{2}),x_{2}) \frac{dy_{1}}{dx_{1}} dx_{1} \quad (s x_{2}y_{2})
$$
\n
$$
\Rightarrow \int_{R_{2}}^{d} f(k(x_{1},x_{2}),x_{2}) \frac{dy_{1}}{dx_{1}} dx_{1} dx_{2}
$$
\n
$$
= \int_{a}^{d} \int_{a}^{b} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{1} dx_{2}
$$
\n
$$
= \int_{a}^{d} \int_{a}^{b} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{1} dx_{2}
$$
\n
$$
= \int_{a}^{c} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{1} dx_{2}
$$
\n
$$
= \int_{a}^{c} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{2} dx_{2}
$$
\n
$$
\Rightarrow \int_{R_{1}}^{c} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{2} dx_{2}
$$
\n
$$
\Rightarrow \int_{R_{1}}^{c} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{2} dx_{2}
$$
\n
$$
\Rightarrow \int_{R_{1}}^{c} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{2} dx_{2}
$$
\n
$$
\Rightarrow \int_{a}^{c} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{2} dx_{2}
$$
\n
$$
\Rightarrow \int_{a}^{c} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{2} dx_{2}
$$
\n
$$
\Rightarrow \int_{a}^{c} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{2} dx_{2}
$$
\n
$$
\Rightarrow \int_{a}^{c} f(k(x_{1},x_{2}),x_{2}) dx_{1} dx_{2
$$

 $Pf : Eacily k_1 D(FoG) = DF \cdot DG (Chain Rule)$ $\left|\det D(F \circ G)\right| = \left|\det DF\right| \left|\det P G\right|$ (Details leave as $\in \times$!)

Final Step: Combining steps 1-3, and veing additivity property of integration, we've proved the Think for general change of variable formula (reed MATH3060)

[Actually, this applies to all dimensions.]