Pf of Thmb:

Thue 5: Suppose
$$\varphi: \begin{pmatrix} y \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \end{pmatrix}$$
 is a diffeomorphism (1-1, onto, s.t.
 φ and $\varphi^{-1} \in C^{1}$) mapping a region G (closed and bounded)
in the uv-plane onto a region R (closed and bounded)
in the xy-plane (except possibly on the boundary). Suppose
 $f(x,y)$ is continuous on R, then
 $\iint f(x,y) \text{ is continuous} on R, then
 $\iint f(x,y) \text{ dxdy} = \iint f \circ \varphi(u, v) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \text{ dudv}$$

Step 0: We need better notations and terminology:
In this proof, well denote

$$D\phi = \begin{pmatrix} \frac{\partial X}{\partial u} & \frac{\partial X}{\partial v} \\ \frac{\partial Y}{\partial u} & \frac{\partial Y}{\partial v} \end{pmatrix}$$
 the differential or
Jacobian matrix

and
$$\frac{\Im(X,Y)}{\Im(U,V)} = \det D\varphi$$
 the Jacobian determinant
We also use "index" notations for the variables:
 (X_1, X_2) or $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ [instead of (X,Y) or $\begin{pmatrix} X \\ Y \end{pmatrix}$.]

Step1: let
$$F = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \mapsto \begin{pmatrix} f_1(X_1, X_2) \\ f_2(X_1, X_3) \end{pmatrix}$$
 utar a point p
with $\frac{\partial(f_1, f_2)}{\partial(X_1, X_2)} \neq 0$ at p . Then, near the point p .
 F can be docomposed into $F = H \circ K$
with H, K of the forms
 $K : \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \mapsto \begin{pmatrix} K(X_1, X_2) \\ X_2 \end{pmatrix} \stackrel{dundle}{=} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$
 $\begin{pmatrix} \text{or } \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \mapsto \begin{pmatrix} K(X_1, X_2) \\ X_1 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \end{pmatrix}$
and $H : \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} y_1 \\ R(y_1, y_2) \end{pmatrix}$,
such that $det DK \neq 0$ and $det DH \neq 0$ at p .
 $Pfof Step1 : By assumption $0 \neq \frac{\partial(f_1, f_2)}{\partial(X_1, X_2)} = det \begin{pmatrix} \frac{\partial f_1}{\partial X_1} & \frac{\partial f_1}{\partial X_2} \\ \frac{\partial f_1}{\partial X_1} & \frac{\partial f_2}{\partial X_2} \end{pmatrix} at p .$$

Case 1
$$\Rightarrow f_1(p) \neq 0$$

Define $\Re(X_1, X_2) = f_1(X_1, X_2)$ near p .
Then the transformation
 $K: \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \mapsto \begin{pmatrix} y_1 = f_1(X_1, X_2) \\ y_2 = X_2 \end{pmatrix}$
is of the required from and thas Jacobian matrix

$$D K = \begin{pmatrix} \frac{\partial \Psi_{1}}{\partial X_{1}} & \frac{\partial \Psi_{1}}{\partial X_{2}} \\ \frac{\partial \Psi_{2}}{\partial X_{1}} & \frac{\partial \Psi_{2}}{\partial X_{2}} \end{pmatrix}^{2} = \begin{pmatrix} \frac{\partial f_{1}}{\partial X_{1}} & \frac{\partial f_{1}}{\partial X_{2}} \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow det D K (p) = \frac{\partial f_{1}}{\partial X_{1}} (p) \neq 0.$$
By Inverse Function Theorem, K is invertible near P and
$$\begin{pmatrix} x_{1} \end{pmatrix} = K^{-1} \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix} = \begin{pmatrix} g(\Psi_{1},\Psi_{2}) \\ X_{2} \end{pmatrix} \text{ is differentiable at } K(p)$$

$$\begin{pmatrix} x_{1} \end{pmatrix} = K^{-1} \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix} = \begin{pmatrix} g(\Psi_{1},\Psi_{2}) \\ X_{2} \end{pmatrix} \text{ is differentiable at } K(p)$$

$$\begin{pmatrix} x_{1} \end{pmatrix} = K^{-1} \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix} = \begin{pmatrix} g(\Psi_{1},\Psi_{2}) \\ X_{2} \end{pmatrix} \text{ is differentiable at } K(p)$$

$$\begin{pmatrix} x_{1} \end{pmatrix} = K^{-1} \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix} = \begin{pmatrix} g(\Psi_{1},\Psi_{2}) \\ X_{2} \end{pmatrix} \begin{pmatrix} \partial H_{1} \\ \partial X_{1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} x_{1} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{1} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{1} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{1} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \partial H_{2} \\ \partial \Psi_{1} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}$$

$$\begin{pmatrix} \partial H_{2} \\ \partial \Psi_{1} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}$$

$$\begin{pmatrix} \partial H_{2} \\ \partial \Psi_{1} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} = \begin{pmatrix} 1 \\ \partial \Psi_{2} \\ \partial \Psi_{2} \end{pmatrix} = \begin{pmatrix} 1 \\ \partial \Psi_{2} \\ \partial \Psi_{2} \end{pmatrix} = \begin{pmatrix} 1 \\ \partial \Psi_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} = \begin{pmatrix} 1 \\ \partial \Psi_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} = \begin{pmatrix} 1 \\ \partial \Psi_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_{2} \end{pmatrix} = \begin{pmatrix} 1 \\ \partial \Psi_{2} \\ \partial \Psi_{2} \end{pmatrix} \begin{pmatrix} \partial H_{2} \\ \partial \Psi_$$

and
$$H = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} z_1 = y_1 \\ z_2 = f_1(y_1, y_2) \end{pmatrix}$$

H is of the required form.

$$DH = \begin{pmatrix} \frac{\partial \overline{z}_1}{\partial y_1} & \frac{\partial \overline{z}_1}{\partial y_2} \\ \frac{\partial \overline{z}_2}{\partial y_1} & \frac{\partial \overline{z}_2}{\partial \overline{z}_2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{\partial \overline{z}_1}{\partial y_1} & \frac{\partial \overline{z}_1}{\partial y_2} \end{pmatrix}$$

$$det DH = \frac{\partial f_1}{\partial y_2} = \frac{\partial f_2}{\partial X_1} \frac{\partial X_1}{\partial y_2} + \frac{\partial f_2}{\partial X_2} \frac{\partial X_1}{\partial y_1}$$
$$= \frac{\partial f_2}{\partial X_1} \cdot \frac{\partial q}{\partial y_2} + \frac{\partial f_2}{\partial X_2} \cdot 1$$

$$= \frac{\partial f_{z}}{\partial X_{1}} \left(- \frac{\partial q}{\partial y_{1}} \frac{\partial f_{1}}{\partial X_{2}} \right) + \frac{\partial f_{z}}{\partial X_{L}}$$
$$= - \frac{\frac{\partial f_{z}}{\partial X_{1}} \cdot \frac{\partial f_{1}}{\partial X_{2}}}{\frac{\partial f_{1}}{\partial X_{1}}} + \frac{\partial f_{z}}{\partial X_{L}}$$

$$= \frac{1}{\frac{2}{2}} \left[\frac{\frac{2}{2}}{\frac{2}{2}} \frac{\frac{2}{2}}{\frac{2}{2}} - \frac{2}{\frac{2}{2}} \frac{2}{\frac{2}{2}} \frac{2}{\frac{2}{2}} \right]$$
$$= \frac{\frac{2}{2}}{\frac{2}{2}} \frac{\frac{2}{2}}{\frac{2}{2}} + \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2}}{\frac{2}{2}}$$

So H and K satisfy the requirements and we have $H \circ K \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = H \begin{pmatrix} \vartheta_1 \\ \vartheta_2 \end{pmatrix} = \begin{pmatrix} \vartheta_1 \\ f_1 \\ \eta_1 \end{pmatrix}$

$$= \begin{pmatrix} f_{1}(x_{1}, x_{2}) \\ f_{2}(x_{1}, x_{2}) \end{pmatrix} = F\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

This completes the proof of case 1.

$$Case 2 \quad \frac{\partial f_{1}}{\partial X_{1}}(p) = 0$$

Sume det $DF = \frac{\partial f_{1}}{\partial X_{1}} \frac{\partial f_{2}}{\partial X_{2}} - \frac{\partial f_{1}}{\partial X_{2}} \frac{\partial f_{2}}{\partial X_{1}} \neq 0 \text{ at } p$,

$$\frac{\partial f_{1}}{\partial X_{2}}(p) \neq 0$$
.
Interchanging the variables $\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{2} \\ x_{1} \end{pmatrix}$
Then the new mapping $F\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$ satisfies the condition
with case 1. Applying case 1 to F, then interchanging
back to $x_{1}, x_{2} \xrightarrow{X}$

$$\frac{step^{2} : let \begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix} = K\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} f_{1}(x_{1}, x_{2}) \\ x_{2} \end{pmatrix}$$
 be a diffeomorphism
from region R_{1} to $R_{2} = K(R_{1})$. Then for any function
 $f(y_{1}, y_{2})$ on R_{2} ,

$$\iint_{R_2} f(y_1, y_2) dy_1 dy_2 = \iint_{R_1} f_0 K(x_1, x_2) \left| dt DK \right| dx_1 dx_2$$

=
$$\iint_{R_1} f_0 K(x_1, x_2) \left| \frac{\partial (y_1, y_2)}{\partial (x_1, x_2)} \right| dx_1 dx_2$$

and change of traviable formula in 1-variable implies

$$\int_{k(a,y_2)}^{k(b,y_1)} f(y_1,y_2) dy_1 = \int_{a}^{b} f(k(x_1,y_2), y_2) \frac{\partial y_1}{\partial x_1} dx_1$$

$$(N > 0)$$

$$= \int_{a}^{b} f(k(x_1,x_2), x_2) \frac{\partial y_1}{\partial x_1} dx_1 \quad (surce x_2 = y_2)$$

$$\Rightarrow \int_{a}^{b} f(y_1,y_2) dy_1 dy_2 = \int_{c}^{d} \left(\int_{a}^{b} f(k(x_1,x_2), x_2) \frac{\partial y_1}{\partial x_1} dx_1 \right) dx_2$$

$$= \int_{c}^{d} \int_{a}^{b} f(k(x_1,x_2), x_2) \left| det DK \right| dx_1 dx_2$$

$$(size \frac{\partial y_1}{\partial x_1} > 0)$$

$$= \iint_{R_1}^{c} f(k(x_1,x_2), x_2) \left| det DK \right| dx_1 dx_2$$

$$(size \frac{\partial y_1}{\partial x_1} > 0)$$

$$= \iint_{R_1}^{c} f(k(x_1,x_2), x_2) \left| det DK \right| dx_1 dx_2$$

$$(size \frac{\partial y_1}{\partial x_1} > 0)$$

$$= \iint_{R_1}^{c} f(k(x_1,x_2), x_2) \left| det DK \right| dx_1 dx_2$$

$$(size \frac{\partial y_1}{\partial x_1} > 0)$$

$$= \iint_{R_1}^{c} f(k(x_1,x_2), x_2) \left| det DK \right| dx_1 dx_2$$

$$(size \frac{\partial y_1}{\partial x_1} > 0)$$

 $Pf: Easily by D(FoG) = DF \cdot DG (Chain Rule)$ $\Rightarrow |det D(FoG)| = |det DF||det PG|.$ (Details leave as Fx!) Final Step: (onbining steps 1-3, and using additivity property of integration, we've proved the Thm 6 for general change of variable formula X (need MATH3060)

[Actually, this applies to all dimensions.]