MATH2020A Tutorial 9

1. Find out the potential functions and evaluate the line integral.
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Let’s assume df (z,y,2) = (2% — 2y2)dz + (y* — 2z2)dy + (2% — 2xy)d=.
This means
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For the first equation, we have
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where C'(y, z) is a function only depending on y, z. Similarly, we have other
two result
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So the only way to choose f is
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to satisfies above three equations with C' a constant free to choose. Of course,
we can choose C' = 0. So by this protential function, we get our result
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2. Find out the potential functions and evaluate the line integral.

/(2’2’2) xdr + ydy + zdz
Notice we have xdx - yfziy - zdy in our inztegrals. This is exactly the
gradient of the function =L+ e, d(T4FE) = adr + ydy + zdz. So we
can guess the potential function will take the form

fla,y,z) = g(a® +y* + 2%
where g(w) : R — R is just a function on real line. Take differential, we will
get
df (v,y,2) = ¢ (*+y*+22)d(2* +y° +2°) = 2¢'(2° +y* + 2°) (vdx+ydy + zdz)

We wish to have i+ wdy + 2d
xdx zdz
df (z,y,2) = Y
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So we only need to make sure
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Or in another form,

So we get



We just take C' as 0 and we have

1
flz,y,2) = 5 arctan(x? + 3 + 2?)
For our integration, we have
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3. Using Green’s Formula to calculate the following integration.
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?{ zy*dy — z*ydr C' is circle 22 4+ y* = 1 with counterclockwise orientation
c

Just apply Green’s formula and we also want to use polar coordinate to
find out the final result.

j{ ryidy — 2*yde = // y* — (—2?)dzdy
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4. Find out the area enclosed by folium of Descartes using Green’s The-
orem which defined by

C={(z,y): 2° +y° = 3ay}

The following is a picture of folium of Descartes.



With Green’s formula, we know that area enclosed by a curve can be
compute by following formulas
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Area(R) = // drdy = 7{ xdy = ]{ —ydx = 57{ xdy — ydx
5 C C C

First, we need to find out a parameter for this curve. Choose y = tx
where t is our parameter. Then we have
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which implies

and hence

. The curve in first quadrant can be written as
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Hence
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5. Suppose u is a harmonic function 1n 2 domam D (We also assume R
is simply connected here), i.e. u satisfies 2 e + 2 o3 % = 0. Show that for any
curve C' : r(t) in this domain, we have
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And using this fact to proof the average equality of harmonic function, i.e.,
show that

u(zo, Yo) = Gy / u(z,y)dzdy (Average of uon circle)

C:={(z,y):(z—x0)?+(y—y0)?=r2}

For the first integral, we just apply Green’s formula to get
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just by definition of harmonic function.
Now we choose C' to be a circle {(x,y) : (x — z0)* + (y — yo)? = r*}, i.e,,
we choose
C :r(t) = (zo +rcost)i+ (yo + rsint)j

Integrate on this curve will give us
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If we choose function I(r) to denote the average of u on the circle {(x,y) :
(x —20)® + (y — yo)? = r?}, Le., we write

I(r)= L ]iu(x,y)ds
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We still use parameter of this circle, i.e., we have
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Thus, take derivative and we get
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But from above computational, we have
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Hence, we have I'(r) = 0. This means, I(r) is just a constant function, does
not depending on r. So we letting r — 0, we get lim, o I(r) = u(zo, yo)
because of the average converging to the center point of the circle as u is a
continuous function. And using I(r) is constant everywhere we know that
I(r) = u(zg, yo). This is exactly the solution.



