(since |Fux ru >0)

Terminology
Given a connected crientable surface
$$S^{C}$$
, there are
two ways to assign the cartinuous unit normal vector field
Suppose S is arientable and
we have chosen one cartinuou unit
namal vector field \hat{n} . Then
Reflit: We said that a parametrization $F(u,v)$ of S^{C}
is compatible with the aientation of S^{C} given by
the nuit normal vector field \hat{n} ,
 $\hat{n} = \frac{\overline{r}_{u} \times \overline{r}_{v}}{|\overline{r}_{u} \times \overline{r}_{v}|}$

$$\frac{p_{eff}}{p_{eff}} = let S le orientable with unit nound \hat{n} .
Let \vec{F} le a vector field on S .
Then the flux of \vec{F} across S is
Flux = $\iint \vec{F} \cdot \hat{n} d\sigma$
 $\vec{F} = \underbrace{f}_{0S} \vec{F} \cdot \hat{n} d\sigma$
 $eggg S : y = x^2$ $osxsl$
 $os \vec{\tau} \leq 4$
with \hat{n} given by the $x = \underbrace{f}_{y=x^2}$$$

x 1

natural parametrization

$$\vec{r}(x, z) = x\hat{i} + x^{2}\hat{j} + z\hat{k}$$

$$\int \vec{r}_{x} = \hat{i} + 2x\hat{j} \implies \vec{r}_{x} \times \vec{r}_{z} = (\hat{i} + 2x\hat{j}) \times \hat{k}$$

$$\int \vec{r}_{z} = \hat{k} \implies \vec{r}_{x} \times \vec{r}_{z} = (\hat{i} + 2x\hat{j}) \times \hat{k}$$

$$= 2x\hat{i} - \hat{j}$$

$$\Rightarrow \hat{n} = \frac{2x\hat{i} - \hat{j}}{\sqrt{4x^{2} + 1}}$$
Let $\vec{F} = yz\hat{i} + x\hat{j} - z^{2}\hat{k}$.
Find $\iint_{S} \vec{F} \cdot \hat{n} d\sigma$.

$$\vec{F} \qquad \hat{i} \qquad \frac{d\sigma}{\sqrt{4x^{2} + 1}}$$
Solut: $\iint_{S} \vec{F} \cdot \hat{n} d\sigma = \int_{0}^{k} \int_{0}^{1} (yz\hat{i} + x\hat{j} - z\hat{k}) \cdot \frac{2x\hat{i} - \hat{j}}{\sqrt{4x^{2} + 1}} \int \vec{x} \cdot \vec{x} + \hat{i} dx dz$

$$= \int_{0}^{k} \int_{0}^{1} (2x^{3}z - x) dx dz \quad (check.!)$$

$$= z \qquad (chech!) \approx x$$

$$\frac{\operatorname{Remark}}{\operatorname{S}} = \iint_{(u,v)} \overline{F}(\overline{r}(u,v)) \cdot \frac{\overline{r}_{u} x \overline{r}_{v}}{|\overline{r}_{u} x \overline{r}_{v}|} \operatorname{Hud} v$$

$$= \iint_{(u,v)} \overline{F}(\overline{r}(u,v)) \cdot (\overline{r}_{u} x \overline{r}_{v}) \operatorname{dud} v.$$

$$\frac{\text{Thm}\,1^2}{\text{Let}\,S} (\frac{\text{Stokes' Theorem}}{\text{Stokes' Theorem}})$$
Let S be a piecewise smooth viented surface with piecewise
smooth boundary C (including the case that C is a union
of finitely many curves). Let
 $\vec{F} = M\hat{i} + N\hat{j} + L\hat{k}$ be a C' vector field.
Suppose C is niented anti-clockwisely with respect to the
unit noural vector field \hat{n} on S' . Then
 $\oint \vec{F} \cdot d\vec{r} = \iint cul\vec{F} \cdot \hat{n} d\sigma$
 $= \iint (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d\sigma$

Hence (i) if
$$C = C_1 \cup \cdots \cup C_k$$
, then it means

$$\frac{k}{2} \oint \vec{F} \cdot d\vec{r} = \iint (\vec{\nabla} x \vec{F}) \cdot \hat{n} d\sigma$$

$$i = (C_i \quad S')$$

(ii) "C is mented anti-clockwisely with respect to the unit normal vector field
$$\hat{n}$$
 " means that
we choose the direction of C such that its (unit) tangent vector \hat{T} satisfies
 $\hat{b} = \hat{n} \times \hat{T}$ pointing toward
the surface \hat{S} .

Note:
$$\hat{b}$$
 is a (unit) targent vector to S' and nonneal to C'
and pointing toward S' . Then
 $\hat{T} = \hat{b} \times \hat{n}$.