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SurfaceArea Integral

t.be ParametricSurface surfacewith parametrization

A parametrics face or a parametrization of a surface
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X t
a circle in XE plane

rotating this circle around the z
axis gives torus
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f a the circle can beparametrizedby
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Revolving around the z axis we have
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is a parametrization of the torus

Note that this torus can also be described as
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