(a) Recall that even $\vec{\nabla} x \vec{F} = 0$ (check) Green's Thm doesn't apply to get of F. dr = 0, since C'encloses the nigin 10,0, where F is not defined. Choose E>O small enough, Such that the circle CE of rodius E centered at (0,0) is completely enclosed by C. F is small in the regular R between C and CE, Hence the general form of Green's Thm gives $O = \iint_{R} \vec{\nabla} x \vec{F} \cdot \vec{k} \, dA = \oint_{A} \vec{F} \cdot d\vec{r} - \oint_{A} \vec{F} \cdot d\vec{r}$ $\Rightarrow \oint_{c} \vec{F} \cdot d\vec{r} = \oint_{c} \vec{F} \cdot d\vec{r}$ $= \iint_{C} \frac{-\frac{y}{x^{2}+y^{2}}}{x^{2}+y^{2}} dx + \frac{x}{x^{2}+y^{2}} dy$ Parametrize $C \in by$ $X = \varepsilon \cos 0$, $0 \le 0 \le 27$ $Y = \varepsilon \sin 0$ $\Rightarrow \oint_{\alpha} \vec{z} \cdot d\vec{r} = \int_{\alpha}^{2\pi} \left[-\frac{\epsilon \Delta \hat{w} \Theta}{\epsilon^{2}} (\epsilon \Delta \hat{w} \Theta) + \frac{\epsilon \omega \Theta}{\epsilon^{2}} (\epsilon \omega \Theta) \right] d\theta$ $= \int_{-1}^{2\pi} 1 d\theta = 2\pi$ (In fact, me've proved that \$ F. dr = 217, Yang radius R>0 which can also proved by consider the domain between

Surface Area & Integral

Def 14 Paromotric Surface (Surface with poramotrization)
A parametric surface (a a parametrization of a surface)
in
$$IR^3$$
 is a mapping of z variables into IR^3 :
 $\vec{F}(u,v) = \times (u,v)\hat{i} + y(u,v)\hat{j} + z(u,v)\hat{k}$
And it is called smooth \vec{i}
(1) \vec{r} is C^1 (i.e. Xu, Xv, Yu, yv, zu, zv are cutumes)
(z) $[\vec{F}_u \times \vec{r}_v \neq 0]$, $\forall u,v$
where $\vec{r}_u = \frac{\partial \vec{r}}{\partial u} = \frac{\partial X}{\partial u}\hat{i} + \frac{\partial Y}{\partial u}\hat{j} + \frac{\partial Z}{\partial u}\hat{k}$
 $= Xu\hat{i} + Yu\hat{j} + Zu\hat{k}$
 $\vec{r}_v = \times v\hat{i} + Yv\hat{j} + Zv\hat{k}$

Note: Condition (2)
$$\Rightarrow$$
 \vec{r}_u , \vec{r}_v are linear independent
 \Rightarrow span { \vec{r}_u , \vec{r}_v } \Rightarrow in fact a 2-dim'l plane
 \Rightarrow "sunface" cannot be degenerated to a curve a point
 \vec{r}_v , $\vec{$

Revolving around the Z-axis, we have

$$\begin{cases}
X = (R + a \cos x) \cos \theta & 0 \le x \le 2T \\
y = (R + a \cos x) \sin \theta & 0 \le \theta \le 2T \\
z = a \sin d
\end{cases}$$
is a parametrization of the torus
Note that this torus can also be described as

$$\left(\int x^2 t y^2 - R\right)^2 + z^2 = A^2$$