Remark:
$$\vec{\nabla} \cdot (\vec{\nabla}f) \neq 0$$
 in general, and it is called the Laplacian of f ,
and is denoted by
 $\vec{\nabla}^2 f = \vec{\nabla} \cdot (\vec{\nabla}f) = \operatorname{div} (\vec{\nabla}f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial z^2} + \frac{\partial^2 f}{\partial z^2}$
[In graduate level, it will be denoted by $\Delta = \vec{\nabla}^2$ or $\Delta = -\vec{\nabla}^2$]
The "operator" $\vec{\nabla}^2$ is called the Laplace operator and the
equation $\vec{\nabla}^2 f = 0$ is called the Laplace equation. Solutions
to Laplace equation are called the thermanic functions.

PS of Thm 10 (n=z)
We only need to show that if R swiply-canectod (e connected)
$$\forall x \neq = 0$$

 $\forall x \neq = 0$ $\left(\frac{\geq M}{\geq y} = \frac{\geq N}{\geq x}\right)$

then
$$\overrightarrow{F}$$
 is conservative.
Care 1: C_1 , C_2 thave no intersection
Then "D2 is simply-connected"
 \Rightarrow the region R enclosed by C_1 and
 C_2 lies completely inside Ω .
Then by Green's Thm,
 $O = \iint \left(\frac{\partial N}{\partial X} - \frac{\partial M}{\partial y}\right) dA = \pm \left(\int_{C_1}^{C_2} - \int_{C_2}^{C_2} \left(M dX + N dy\right)\right)$

$$\Rightarrow \int_{C_1} M dx + N dy = \int_{C_2} M dx + N dy$$

$$C_1$$

•

Then by case 1,
$$\int_{C_1} Mdx + Ndy = \int_{C_2} Mdx + Ndy$$

= $\int_{C_2} Mdx + Ndy$

Suppose that we have a simple closed curve C in
$$IR^2$$

Suppose that we have a simple closed curve C in IR^2
Suppose that $C_{1}, C_{2}, ..., C_{n}$ be pairwise disjoint, piecewise smooth,
simple closed curves, such that $C_{1}, ..., C_{n}$ are enclosed by C.
(All C, $C_{1}, ..., C_{n}$ are auti-clockwise oriented)
Let R be the regime between C and $C_{1}, ..., C_{n}$.
Suppose that $\vec{F} = Mi + Nj$ is closic on some gen set
containing R, and is C1. Then we have

$$\frac{\int \int (\frac{\partial N}{\partial X} - \frac{\partial M}{\partial y}) dA = \oint Mdx + Ndy - \sum_{i=1}^{n} \oint Mdx + Ndy}{C_{i}}$$
(This is the tangential form. The normal form is similar)

(starting from p):

$$C^{*} = C^{+}L - C^{-}_{1} - L$$
Then the region R enclosed be tween $C + C^{-}_{1}$ is the region
enclosed by C^{*}_{1} except the arc L.
Hence $\iint (\frac{\partial N}{\partial K} - \frac{\partial M}{\partial Y}) dA = \iint (\frac{\partial N}{\partial K} - \frac{\partial M}{\partial Y}) dA$
R Greens $\iint (\frac{\partial N}{\partial K} - \frac{\partial M}{\partial Y}) dA = \iint (\frac{\partial N}{\partial K} - \frac{\partial M}{\partial Y}) dA$
Greens $\iint C^{*}_{1} = \iint (M dX + N dY)$
 $= \oint M dX + N dY - \oint M dX + N dY$

$$\underbrace{eg49}_{X^2+y^2} = \overline{F} = \frac{-y}{X^2+y^2} \hat{i} + \frac{x}{X^2+y^2} \hat{j} \quad m \quad (R^2 \setminus \{0,0\}) = SZ$$
we've calculated $\oint_{C_1} \overline{F} \cdot d\overline{r} = 2\overline{n} \quad fa \quad C_1 : x^2+y^2 = 1$
(auti-clochwise)

Solu (9) Recall that
$$\overline{\nabla} \times \overline{F} = 0$$

(Green's Thin doesn't apply to get $\mathcal{O}_{\mathcal{L}} \overline{F} \cdot d\overline{F} = 0$, since \mathcal{C} encloses)
the origin (0,0), where \overline{F} is not defined.

Choose
$$\varepsilon > 0$$
 small enough,
such that the circle C_{ε}
of radius ε contered at (0,0)
is completely enclosed by C
 $\overrightarrow{\mathsf{F}}$ is smooth in the region ε between C and C_{ε} .
Hence the general form of Goreen's Thin applied:
 $0 = \iint(\overrightarrow{\mathsf{J}} \times \overrightarrow{\mathsf{F}}) \cdot \overrightarrow{\mathsf{k}} \, dA = \oint_{C} \overrightarrow{\mathsf{F}} \cdot d\overrightarrow{\mathsf{r}} - \oint_{C_{\varepsilon}} \overrightarrow{\mathsf{F}} \cdot d\overrightarrow{\mathsf{r}}$
 $\Rightarrow \oint_{C} \overrightarrow{\mathsf{F}} \cdot d\overrightarrow{\mathsf{r}} = \oint_{C_{\varepsilon}} \overrightarrow{\mathsf{F}} \cdot d\overrightarrow{\mathsf{r}}$
 $= \oint_{C} \frac{-Y}{x^{2} + y^{2}} dx + \frac{x}{x^{2} + y^{2}} dy$

Parametrize C_{ε} by $\int_{y=\varepsilon}^{x=\varepsilon} \frac{\varepsilon}{\omega} \frac{1}{\omega} \frac{1}{\omega} \int_{0}^{2\pi} \frac{1}{\varepsilon} \frac{\varepsilon}{\varepsilon} \frac{1}{\omega} \frac{1}{\varepsilon} \frac{1}{\varepsilon} \frac{\varepsilon}{\varepsilon} \frac{1}{\varepsilon} \frac{1}$

