95 of Grions. Tim (taugudial form)	
196 of Grions. Tim (taugudial form)	
196 (1) . If R = { (x, y,)= a \$×5b, 9, (x, 5,4,5,0)}	
196 (1) . If R = { (x, y,)= a \$×5b, 9, (x, 5,4,5,0)}	
196 (2) . . If R = { (x, y,)= b, (y, x, x, b, y, c \$y,5, d}	
196 (3) . . If R \overline{x} is both type (1) a type (2), it said to be <u>simple</u> .	
196 (4) . If R \overline{x} is both type (1) a type (2), it said to be <u>simple</u> .	
2948 (1) .	1000 : Let R \overline{x} is simple to be <u>simple</u> .
1001 : If R \overline{x} is both type (1) . If R \overline{x} is simple to be <u>simple</u> .	
1010 : If R \overline{x} is both type (2), it is simple to be <u>simple</u> .	
102 : 1000 : 10	

If of Græanínlum pa sample region.
\nBy definition, R io of type U) and can be written as
\n
$$
R = \{(x,y): a\le x\le b, g(x)\le y\le g_2(x)\}\
$$
\nLet denote the components of the
\nboundary of R by C₁, C₂, C₃, C₄
\n
$$
QD \text{ in the figure (Note that C2 is a\nand for C4 (cadd) and ka a point.)
$$
\nThen
$$
Dk = C_1 + C_2 + C_3 + C_4
$$
 as included (Uure)
\n
$$
(u dv)_{q} u_{q} + u_{s} s \text{ to } q
$$
\n
$$
C_1 = \{y = g_1(x) \} \text{ can be parametric to } y
$$
\n
$$
C_2 u_{q} = \{(x, g_1(x)) : a \le x \le b
$$
\n
$$
C_3 u_{q} = \{(x, g_2(x)) : a \le x \le b\}
$$
\n
$$
C_4 u_{q} = \{(x, g_2(x)) : a \le x \le b\}
$$
\n
$$
C_5 u_{q} = (x, g_2(x)) : a \le x \le b
$$
\n
$$
C_6 u_{q} = \{(x, g_3(x)) : a \le x \le b\}
$$
\n
$$
C_7 u_{q} = (x, g_2(x)) : a \le x \le b
$$
\n
$$
C_8 u_{q} = \{(x, g_3(x)) : a \le x \le b\}
$$
\n
$$
C_9 u_{q} = \{(x, g_4(x)) : a \le x \le b\}
$$
\n
$$
C_9 u_{q} = \{(x, g_4(x)) : a \le x \le b\}
$$
\n
$$
C_9 u_{q} = \{(x, g_4(x)) : a \le x \le b\}
$$
\n
$$
C_9 u_{q} = \{(x, g_4(x)) : a \le x \le b\}
$$
\n
$$
C_9 u_{q} = \{(x, g_4(x)) : a \le x \le b\}
$$
\n
$$
C_9 u_{q} = \{(x, g_4(x)) : a \le x \le b\}
$$
\n
$$
C_9 u_{q} = \{(x, g_4(x)) : a \le
$$

$$
F u_{2} = \{x=b\}, \quad x \text{ can be parametrized by}
$$
\n
$$
F(x) = (b, x), \quad g_{1}(b) \le x \le g_{2}(b)
$$
\n
$$
\Rightarrow \int_{C_{2}} M dx = 0 \quad (\text{Since } \frac{dx}{dt} = 0)
$$
\n
$$
\Rightarrow \int_{C_{2}} M dx = 0 \quad (\text{since } \frac{dx}{dt} = 0)
$$
\n
$$
\Rightarrow \int_{C_{4}} M dx = -\int_{C_{4}} M dx = 0
$$
\n
$$
F u = \oint_{\mathcal{R}} M dx
$$
\n
$$
= \int_{a}^{b} [M(x, g_{1}(x)) - M(x, g_{2}(x))] dx
$$
\n
$$
= \int_{a}^{b} [M(x, g_{1}(x)) - M(x, g_{2}(x))] dx
$$
\n
$$
= \int_{a}^{b} [M(x, g_{1}(x)) - M(x, g_{2}(x))] dx
$$
\n
$$
= \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} - \frac{2M}{g_{y}} dy] dx
$$
\n
$$
= \int_{a}^{b} - [M(x, g_{2}(x)) - M(x, g_{1}(x))] dx
$$
\n
$$
= \oint_{\mathcal{R}} M dx
$$

Since R is also type (2), R can be written as r = {(x,y) = th(y) sxstr2(y), csysd }

R = {(x,y) = th(y) sxstr2(y), csysd }

d - - $\frac{c_4}{\sqrt{c_1 R}}$ x=th(y)

x=th(y)

$$
\oint_{\partial R} N dy = - \int_{c}^{d} N(f_{i,1}(\theta) + c) dt + O + \int_{c}^{d} N(f_{i,2}(\theta) + c) dt + O
$$
\n
$$
= \int_{c}^{d} [N(f_{i,2}(\theta) + c) - N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c) - N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c) - N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,2}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \int_{c}^{d} [N(f_{i,1}(\theta) + c)] dt
$$
\n
$$
= \
$$

Proof of Grian's Thm for
\n
$$
R = \text{finite union of simple regions with intervals}
$$

\n $R = \text{finite union of single regions with intervals}$
\n $W = \text{while along some boundary line segments, and}$
\n $W = \text{finite segments} + \text{such only at the end}$
\n $W = \text{points at most}$
\n $R_1, R_2 = \text{supp}(R_1)$
\n $W = \text{points at most}$
\n $W = \text{points at$

By changing the
$$
R = \bigcup R
$$
: $\int arct \frac{1}{R} arct \frac{1}{R}$ and $\int R$.
\n R : RP sup/Re and Q $compar$
\n R : R : PR : lim/Re Q $compar$ Q $compar$ $harpar$ lim
\n $lim/Im \int_{R} \left(\frac{\partial N}{\partial X} - \frac{\partial M}{\partial Y} \right) dA = \sum_{k} \iint_{R} \left(\frac{\partial N}{\partial X} - \frac{\partial M}{\partial Y} \right) dA$
\n $= \sum_{k} \oint_{R} M dX + N dY$ $\left(\begin{array}{c} \frac{1}{2}g & \frac{1}{2}g & \frac{1}{2}g \\ \frac{1}{2}g & \frac{1}{2}g & \frac{1}{2}g & \frac{1}{2}$

Denote
$$
C_{\tilde{c}} =
$$
 the part of ∂R ; with no intersection with

Then
$$
\partial R_{\zeta} = C_{\zeta} + \frac{1}{3} L_{\zeta}
$$

\n
$$
(3+i)
$$
\nwhere Lij is divided at t and y to find the
\n
$$
\int_{R} (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}) dA = \sum_{\substack{c=1 \\ c_1 + \frac{1}{3} \leq r_1}} \oint_{(3+i)} Mdx + Ndy
$$
\n
$$
= \sum_{\substack{c=1 \\ c_1, \ldots, c_n}} Mdx + Ndy + \sum_{\substack{c=1 \\ c_1, \ldots, c_n}} Mdx + Ndy
$$
\n
$$
= \sum_{\substack{c=1 \\ c_1, \ldots, c_n}} Mdx + Ndy + \sum_{\substack{c=1 \\ c_1, \ldots, c_n}} Mdx + Ndy
$$

Note that, as
$$
C_i
$$
 is not a (norm of boundary of any other F_j)
\n $\sum C_i = \partial F$
\n $\therefore \sum_{k} \int_{C_i} Mdx + Ndy = \oint_{\partial F} Mdx + Ndy$
\nFinally, we have
\n $L_{j\bar{i}} = -L_{i\bar{j}}$
\n \therefore $\sum_{k} \int_{C_i} Mdx + Ndy = \oint_{\partial F_j} \frac{L_{ji} \int_{L_{ij}} E_i}{\int_{\partial F_j} L_{ij}}$
\n \Rightarrow $\int_{\bar{i}} Mdx + Ndy = \sum_{k} \sum_{\substack{i,j \ i,j}} \int_{L_{ij}^*} Mdx + Ndy$
\n $\Rightarrow \sum_{k} \int_{\bar{i}} Mdx + Ndy$
\n $= \sum_{k} \int_{\bar{i} \leq j} Mdx + Ndy + \sum_{\substack{i,j \ i,j}} \int_{L_{ij}^*} Mdx + Ndy$
\n $= \sum_{k} \int_{\bar{i} \leq j} Mdx + Ndy + \sum_{\substack{i,j \ i,j}} \int_{L_{ij}^*} Mdx + Ndy$
\n $= \sum_{k} \int_{\bar{i} \leq j} (l_{i\bar{i}j} Mdx + Ndy + \int_{L_{j\bar{i}}} Mdx + Ndy)$
\n $= \sum_{k} \int_{\bar{i} \leq j} (l_{i\bar{i}j} Mdx + Ndy + \int_{L_{j\bar{i}}} Mdx + Ndy)$
\n $= \sum_{k} \int_{\bar{i} \leq j} (l_{i\bar{i}j} Mdx + Ndy + \int_{L_{j\bar{i}}} Mdx + Ndy) = 0$

This 2nd case basically include almost all situations in
He Lwel of Advanced Calculus,
The proof of geniral case needs "awalysis" and will be
omitted three .
$$
\hat{x}
$$

$$
\frac{p_{ef}12: \text{The diverging of } \vec{F} = M_{\text{at}}^{\text{at}} + M_{\text{at}}^{\text{at}} \vec{v} \text{ defined to be}
$$
\n
$$
div \vec{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}
$$

Note:
$$
div \vec{\epsilon} = \lim_{\epsilon \to 0} \frac{1}{Area(\overline{D}_{\epsilon}(x,y))} \iint_{\overline{D}_{\epsilon}(x,y)} (\frac{\partial M}{\partial x} + \frac{\partial M}{\partial y}) dA
$$

\n
$$
= \lim_{\epsilon \to 0} \frac{1}{Area(\overline{D}_{\epsilon}(x,y))} \underbrace{\oint_{\overline{D}_{\epsilon}(x,y)} \vec{\epsilon} \cdot \hat{n} ds}_{\overline{D}_{\epsilon}(x,y)}
$$
\n
$$
= \lim_{\epsilon \to 0} \frac{1}{Area(\overline{D}_{\epsilon}(x,y))} \underbrace{\oint_{\overline{D}_{\epsilon}(x,y)} \vec{\epsilon} \cdot \hat{n} ds}_{\overline{D}_{\epsilon}(x,y)}
$$
\nNotating: For $f(x,y)$, $\overline{v}f = \frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{j}$ *gradient*

\n
$$
= \left(\frac{\hat{x}}{\hat{x}}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y}\right)
$$
\n
$$
\overline{d} \vec{L} \vec{L} \text{ (as well as } \vec{L} \text{ is } \vec{L} \text{ (as well as } \vec{L} \text{ is } \vec{L} \text{)}
$$
\n
$$
\overline{d} = \frac{\hat{x} \cdot \hat{D}}{\hat{x} + \hat{j} \cdot \hat{y} + \hat{j} \cdot \hat{y}} = \text{div } \vec{F}
$$

Hence we also unite $div \vec{F} = \vec{v} \cdot \vec{F}$ Δf 13: Refine rot \vec{F} to be $rot \vec{F} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}$ $\left(\frac{f}{\phi} \vec{F} = M_x^4 + N_y^4 \right)$ $rot \vec{F} = \frac{ln \hat{v}}{cos \frac{1}{Area}(\overline{R}(x,y))}$ $\frac{\iint \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \partial M}{\frac{\partial M}{\partial x}}$ Note: = $\frac{1}{\cos \theta}$ of \vec{f} ds
 $\frac{1}{\cos(\theta \cos \theta)}$ $\frac{1}{\cos(\theta \sin \theta)}$ (called)
= circulation dousity u aing $\vec{q} = \hat{\lambda} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y}$, we can write $rot\vec{F} = (\vec{\nabla}\times\vec{F})\cdot\hat{k}$ $\vec{F} = M\hat{i} + N\hat{j} + O\hat{k}$ ($\vec{\mu}$ R^3) $(M=M(xy))$
 $\vec{\tau} = \hat{\lambda} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$ ($\vec{\mu}$ R^3) $(M=M(xy))$ Stre $\Rightarrow \quad \vec{\nabla} \times \vec{F} = \begin{vmatrix} \vec{\lambda} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{vmatrix} = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ M & N \end{vmatrix} \begin{pmatrix} \lambda \\ k \end{pmatrix} = \begin{pmatrix} \frac{\partial N}{\partial x} & \frac{\partial M}{\partial y} \\ \frac{\partial N}{\partial y} & \frac{\partial}{\partial y} \end{pmatrix} \hat{k}$ \Rightarrow rot $\hat{F} = (\vec{v} \times \hat{F}) \cdot \hat{k}$, i.e. \hat{k} -component of

$$
\frac{\text{Var}(E) \cdot \text{where}}{\text{Var}(E \cdot \frac{d}{dx} \cdot \vec{\tau} \times \vec{F})}
$$
\n
$$
\frac{\text{Var}(E \cdot \frac{d}{dx} \cdot \vec{\tau} \times \vec{F})}{\text{Var}(E \cdot \vec{\tau})}
$$
\n
$$
\frac{\text{Var}(E \cdot \vec{\tau})}{\text{Var}(E \cdot \vec{\tau})}
$$

tangular

$$
\frac{\oint_C \vec{F} \cdot \vec{r} ds = \iint_C \omega d\vec{r} \cdot \vec{k} dA}{\oint_C \vec{F} \cdot \vec{r} ds = \iint_C \vec{r} \cdot \vec{r} ds}
$$

And Thurlo can be written as

$$
\frac{\pi_{hmlD} \cdot \text{.} \cdot
$$

(Check: cese fa n = 3)

Note: (i) and
$$
\vec{F} = \vec{v} \times \vec{F}
$$
 defined only in \mathbb{R}^3 (or \vec{F})

\n(ii) but $d\vec{w}\vec{F} = \vec{v} \cdot \vec{F}$ can be defined on \mathbb{R}^n for any n .

\nIn particular, in \mathbb{R}^3

\n $\boxed{\underline{B}f(z) \quad \text{The divergence of } \vec{F} = M\hat{i} + N\hat{j} + L\hat{k} \quad \text{is defined to be}$

\n $d\vec{w}\vec{F} = \vec{v} \cdot \vec{F} = (\vec{x} \frac{\partial}{\partial x} + \vec{y} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}) \cdot (M\hat{i} + N\hat{j} + L\hat{k})}$

$$
= \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial L}{\partial z}
$$

Then one can easily check the following facts: (Ex.)

$$
\overline{F_{\alpha} C^{2} f_{\alpha\alpha} f_{\alpha\beta} + \text{and} C^{2} \text{vech } f_{\alpha\beta} d\beta}.
$$
\n
$$
\overrightarrow{v_{\alpha} C^{2} f_{\alpha\beta} f_{\alpha\beta} + \text{and} C^{2} \text{vech } f_{\alpha\beta} d\beta}.
$$
\n
$$
\overrightarrow{v_{\alpha} C^{2} f_{\alpha\beta} f_{\alpha\beta} + \text{and} C^{2} \text{vech } f_{\alpha\beta} = 0
$$
\n
$$
\overrightarrow{v_{\alpha} C^{2} f_{\alpha\beta}} f_{\alpha\beta} = 0 \quad \text{(i.e. } \text{div}(\text{curl } \overrightarrow{F}) = 0
$$

$$
\vec{\hat{y}} \cdot \vec{\hat{y}} \cdot (\vec{\hat{y}}) = \vec{z}
$$