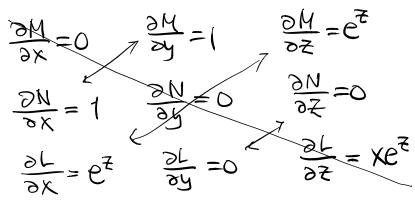
eg47 let
$$\Omega = IR^3$$
 (connected 4 simply-connected)
let $\vec{F} = M\hat{x} + N\hat{j} + L\hat{k}$
 $= (y + e^2)\hat{x} + (x + I)\hat{j} + (I + x e^2)\hat{k}$
Find the potential function f of \vec{F} , i.e.
 $\vec{\nabla}f = \vec{F}$.

Solu: This is, we want to solve $\frac{2f}{2x} = M$, $\frac{2f}{2y} = N$, $\frac{2f}{2z} = L$. Checking M,N,L satisfy the system of PDE in Corto Thm 9:



Thun 10 => excitence of potential function S. To find f explicitly:

$$= \frac{\partial f}{\partial x} = y + e^{z}$$

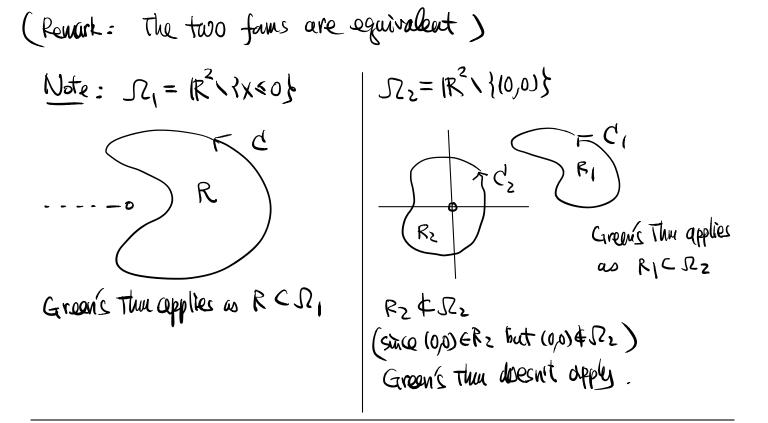
$$= \int (y + e^{z}) dx = x (y + e^{z}) + \text{"const. } \tilde{y} x''$$

$$(function of y = z ally)$$

$$= xy + xe^{z} + g(y,z) \quad for some function g(y,z)$$

$$X+I = \frac{\partial f}{\partial y} = \chi + \frac{\partial g}{\partial y}$$

• Taugustial Form
$$\oint_C \vec{F} \cdot \hat{f} ds = \oint_C Mdx + Ndy = \iint_R (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}) dxdy$$



eg48: Verify both form of Green's Thu fa $\vec{F}(x,y) = (x-y)\vec{i} + x\vec{j}$ on $\mathcal{I} = IR^2$ ($\vec{u} \in C^\infty$) $C = unit cicle : \vec{F}(\pm) = cost \vec{i} + anit \vec{j}$, $\pm \epsilon to, 2T$. Then R = region enclosed by $C = \ell \times^2 + y^2 < 1$ } the unit diac. (We also write $C = \partial R$ bandary of R)

Solu:
$$M = X - Y$$
, $N = X$
 $\frac{\partial M}{\partial X} = 1$, $\frac{\partial M}{\partial y} = -1$, $\frac{\partial N}{\partial X} = 1$, $\frac{\partial N}{\partial y} = 0$
On C , $X = oot$, $Y = sut$ $t \in [0, 2T]$
Normal fam:
 $LHS = \bigoplus Mdy - Ndx$
 $= \int_{0}^{2} [(cost - sut) cost - cost (-sut)]dt$
 $= \int_{0}^{2} [(cost - sut) cost - cost (-sut)]dt$

$$RHS = \iint_{R} \left(\frac{\partial N}{\partial X} + \frac{\partial N}{\partial Y} \right) dXdy = \iint_{R} (1+\delta) dA = T$$

Tangential four:
LHS =
$$\oint_{C} Mdx + Ndy = 2\pi$$
 (check!)
RHS = $\iint_{R} (\frac{\partial N}{\partial X} - \frac{\partial M}{\partial y}) dA = \iint_{R} (1 - (-1)) dA = 2\pi$

(Note: This example shows that even the 2 form are equivalent,) but values involved may differ.