\n $\frac{Pf}{f} : \text{Type(1)} : \text{Extend } f(x,y) \to F(x,y)$ \n	\n $\frac{G}{f}(x,y) \text{ and } \text{Note: } \text{A} \text{ would that}$ \n	\n $\frac{G}{f(y)} \times \text{I}(\text{A})$ \n	\n $\frac{G}{f(y)}$ \																															
--	---	--	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	-----------------------

$$
\frac{eqf}{dt} \text{Integtable } f(x,y) = 4y+z
$$
\n
$$
\text{over the region bounded by } y = x^2 \text{ and } y = zx.
$$
\n
$$
\frac{S_{\text{oh}}}{4} = \int_{y=x}^{x} \int_{y=x^2}^{x=2x} f(x,y) dx
$$
\n
$$
= \int_{0}^{2} \int_{x^2}^{2x} (4y+z) dy dx
$$
\n
$$
= \int_{0}^{2} (-2x^2 + 6x^2 + 4x) dx \text{ (check.)}
$$
\n
$$
= \frac{56}{6} \text{ (clock.)}
$$

$$
\begin{array}{lll}\n\text{In fact, R is also type (2), and Fubini's} \\
\Rightarrow & \iint_{R} f(x,y) dA = \int_{0}^{4} \left[\int_{\frac{y}{2}}^{\frac{y}{2}} (4y+z) dx \right] dy \\
&= \int_{0}^{4} (4y+z) (\sqrt{y} - \frac{y}{z}) dy \\
&= \cdots = \frac{56}{5} \text{ (chck!)}\n\end{array}
$$

$$
\frac{296}{500} \div \text{Evaluate } \int_{0}^{1} \int_{y}^{1} \frac{a\overline{u}x}{x} dx dy \text{ d}y
$$
\n
$$
\frac{560}{1} \div \text{Required } \int_{0}^{1} \int_{y}^{1} \frac{a\overline{u}x}{x} dx dy \text{ as a double integral}
$$
\n
$$
\text{of } \frac{a\overline{u}x}{\pi} \text{ over the region } \frac{1}{x} + \frac{1}{x} \text{ and } \frac{1}{x} \
$$

By Fubin's
\n
$$
\int_{0}^{1} \int_{y}^{1} \frac{a\tilde{u}x}{\kappa} d\kappa dy = \int_{0}^{1} \int_{0}^{X} \frac{a\tilde{u}x}{\kappa} dy dx
$$
\n
$$
= \int_{0}^{1} \frac{a\tilde{u}x}{\kappa} \cdot \kappa dx
$$
\n
$$
= \int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1 - 4
$$
\n
$$
\int_{0}^{1} a\tilde{u}x dx = 1
$$

$$
\frac{qqq}{Fund} \int_{R} x dA
$$
, where R \dot{u} the region \ddot{u} the right half-plane
bounded by $y=0$, $x+y=0$ and the unit circle.

Altuated

\n
$$
\iint_{R} x dA = \int_{0}^{\frac{1}{4z}} \int_{-x}^{0} x dy dx + \int_{\frac{1}{4z}}^{1} \int_{-\sqrt{1-x^{2}}}^{0} x dy dx
$$
\n
$$
= \int_{0}^{\frac{1}{4z}} x^{2} dx + \int_{\frac{1}{4z}}^{1} x \sqrt{1-x^{2}} dx = \frac{1}{3\sqrt{2}} \text{ (duch!)}
$$

Applications

(1) Area (of (good) region RCR²)

$$
\triangle f^3 \qquad \text{Area}(\mathbb{R}) = \bigvee_{\mathbb{R}} 1 \, d\mathbb{A}
$$

then Fusini's Thur implies the well-known formula $Area(R) = \int_{c}^{b} [f(x) - g(x)] dx$ of R is the region bounded by the curves y=f(x) and $y = 9(x)$ $\left(\int (a) = f(a) , \int (b) = 9(b) , \int (x) \le g(x) \right)$ $for a $x $s$$ $\left\langle \begin{array}{c} R \\ R \end{array} \right\rangle$ (Ex^{\prime})

eg10: Area baunded by y=x² and y=x+2. $\int \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} dx = 1$ then by Fubins

Area =
$$
\int_{-1}^{2} (x+z-x^{2})dx = \frac{9}{2} (check.)
$$

(2) Average (of a function over a region)
405
$$
f: R^{CR} \rightarrow R
$$
 be an integrable function

$$
\frac{Def4}{\pm}:\text{ The average value of } f \text{ over } R
$$
\n
$$
= \frac{1}{Area(R)} \iint_{R} f(x,y) dA
$$

$$
Eq1: let f(x,y) = x \omega xy, R = I0, \pi J \times I0, IJ
$$
\n
$$
= \frac{1}{\pi} \int_{0}^{\pi} \int_{0}^{1} x \omega xy \,dy \,dx
$$
\n
$$
= \frac{1}{\pi} \int_{0}^{\pi} \int_{0}^{1} x \omega xy \,dy \,dx
$$
\n
$$
= \frac{1}{\pi} \int_{0}^{\pi} \int_{0}^{1} x \omega xy \,dy \,dx
$$
\n
$$
= \frac{2}{\pi} (cleck!) \times
$$

Method to remembe the family dA=dxdy=rdrdo

Double integral of
$$
f
$$
 onto $R = \{(r, \theta) : a \le r \le b\}$, $c \le \theta \le d\}$ in polar
\ncoordinates is

\n
$$
\iint_R (ra\theta, ra\bar{u}, \theta) r dr d\theta = \int_c^d \left[\int_a^b f(r, \theta) r dr \right] d\theta
$$
\n
$$
= \int_a^b \left[\int_c^d f(r, \theta) r dr \right] d\theta
$$
\n
$$
= \int_a^b \left[\int_c^d f(r, \theta) r dr \right] d\theta
$$
\nwhere $f(r, \theta)$ is the amplitude of $f(r, \theta)$ is a special case of the change of variables
\n
$$
\frac{f_{\text{c}}}{\sqrt{2\pi}} \cdot \frac{1}{\sqrt{2\pi}} \cdot \frac{
$$

Mae generally

Thus $2:2f$ R is a (closed and bounded) region with
$C \le \theta \le d$ and
$a(\theta) \le r \le b(\theta)$
$(0 \le a(\theta) \le b(\theta), a(\theta) \ne b(\theta)$
$4ad$ $f: R \Rightarrow R$ is a unit value
6 f and f and f are not equal to
$\int_{R} f(x,y) dA = \int_{C}^{d} \left[\int_{a(\theta)}^{b(\theta)} f(n\omega, n\omega, \theta) r dr \right] d\theta$

Much easier than befac!