

One way choose the point
$$
(x_k, y_k) = (\frac{2k}{n}, \frac{3}{n}) \in R_k
$$

\nand consider the Riemann sum
\n
$$
\sum_{\lambda_i j} f(x_k, y_k) \Delta A_k
$$
\n
$$
= \sum_{\lambda_i j} (\frac{2\lambda}{n}) (\frac{3}{n})^2 \cdot \frac{2}{n} \cdot \frac{1}{n}
$$
\n
$$
= \frac{4}{n^5} \sum_{\lambda_i j = 1}^{\infty} \lambda_j^2
$$
\n
$$
= \frac{4}{n^5} \sum_{\lambda_i j = 1}^{\infty} \lambda_j^2
$$
\n
$$
= \frac{4}{n^5} \sum_{\lambda_i j = 1}^{\infty} (\lambda_j^2 \cdot \frac{3}{n})
$$
\n
$$
= \frac{4}{n^5} \sum_{\lambda_i j = 1}^{\infty} (\lambda_j^2 \cdot \frac{3}{n})
$$
\n
$$
= \frac{4}{n^5} \sum_{\lambda_i = 1}^{\infty} (\lambda_j^2 \cdot \frac{3}{n})
$$
\n
$$
= \frac{4}{n^5} \sum_{\lambda_i = 1}^{\infty} (\lambda_j^2 \cdot \frac{3}{n})
$$
\n
$$
= \frac{4}{n^5} \cdot \frac{\sum_{\lambda_i = 1}^{\infty} (\lambda_i^2 \cdot \frac{3}{n})}{2} = \frac{4}{n^5} \cdot \frac{\sum_{\lambda_i = 1}^{\infty} (\lambda_i^2 \cdot \frac{3}{n})}{2} = \frac{4}{n^5} \cdot \frac{\sum_{\lambda_i = 1}^{\infty} (\lambda_i^2 \cdot \frac{3}{n})}{2} = \frac{\sqrt{4}}{6}
$$
\n
$$
\therefore \sum_{\lambda_i = 1}^{\infty} x_i y_i^2 dx dy = \frac{2}{3}
$$
\n
$$
\therefore \sum_{\lambda_i = 1}^{\infty} x_i y_i^2 dx dy = \frac{2}{3}
$$
\n
$$
\therefore \sum_{\lambda_i = 1}^{\infty} x_i y_i^2 dx dy = \frac{2}{3}
$$
\n
$$
\therefore \sum_{\lambda_i = 1}^{\infty} x_i y_i^2 dx dy = \frac{2}{3}
$$
\n
$$
\therefore \sum_{\lambda_i = 1}^{\infty} x_i y_i
$$

The last 2 integrals abone ane called iterated integrals (PS = Omitted) Ideas Sun horizontal first & taking linit C sum vectivally first & taking linit $\int^{\mathbf{a}} \left[\int_{a}^{b} f(x, y) dx \right] dy$ $\int_{a}^{b}[\int_{c}^{d}f(x,y)dy]dx$ $($ "z" first û eg 2) $\Big(\begin{array}{c} \sqrt{2} & \sqrt{2} \\ \frac{1}{2} & \sqrt{2} \end{array} \Big)$ eg?: Luiz Fubini to calculate SS xy 2dxdy where R=[0,2]x 70,1] Solu: By Fubini $\int \int xy^2 dA = \int^2 \left[\int_0^1 xy^2 dy \right] dx$ = $\int_{a}^{2} (x \int_{0}^{1} y^{2} dy) dx$ = $\int_{0}^{2} \frac{x}{2} dx = \frac{2}{5}$ $m \int \int xy^{2} dA = \int_{0}^{1} \overline{L} \int_{0}^{2} xy^{2} dx \int dy$ $=\int_{0}^{1}\left[y^{2}\int_{0}^{z}xdx\right]dy$ = $\int_{0}^{1}2y^{2}dy = \frac{2}{5}$ Much easier than merg Riemann sum ! 994: Sane tuines the "order" of the iterated integrals is important in practical calculations! Eind SS xain(xy)ds \mathcal{L} π و) \mathcal{L} ر π

Soln : $\iint_{[a,0] \times [0,1] \times [0,1]} x \sin(xy) \, dx = \int_{0}^{1} \int_{0}^{1} x \sin(xy) \, dx \, dx$
So, $\iint_{[a,0] \times [0,1]} x \sin(xy) \, dx = \int_{0}^{1} \int_{0}^{1} \frac{(\cos y + \sin y)}{y^2} \, dy$ (integrated by - parts)
On the other hand, $\iint_{a} \frac{d\theta}{dx} \arctan(\theta) \, dx$
$\iint_{[a,0] \times [a,0]} x \sin(xy) \, dx = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x \sin(xy) \, dy \, dx$
$\iint_{[a,0] \times [0,1]} x \sin(xy) \, dx = \int_{0}^{1} \int_{0}^{1} \cos(xy) \, dy \, dx$
$= \int_{0}^{1} \left(-\cos\pi x + 1 \right) \, dx$
$= \int_{0}^{1} \left(-\cos\pi x + 1 \right) \, dx$
$= \int_{0}^{1} \left(-\cos\pi x + 1 \right) \, dx$
$= \int_{0}^{1} \left(-\cos\pi x + 1 \right) \, dx$
$= \int_{0}^{1} \left(-\cos\pi x + 1 \right) \, dx$
$= \int_{0}^{1} \left(-\cos\pi x + 1 \right) \, dx$
$= \int_{0}^{1} \left(-\cos\pi x + 1 \right) \, dx$
$= \int_{0}^{1} \left(-\cos\pi x + 1 \right) \, dx$
$= \int_{0}^{1} \left(-\cos\pi x + 1 \right) \, dx$
$= \int_{0}^{1} \left$

(ii) ζ and P with different $(x_k, y_k) \ge (x_k', y_k')$ such that
 $\zeta(f, P) \to a \ne b \leftarrow S(f, P)$
with (x_k, y_k)

eff:
$$
l_{d}f R=[0, Jy[0,1]
$$

\nAnsy = $\begin{cases} 0, & j \\ 1, & \text{otherwise} \end{cases}$

\nThen f is not integrable over R .

\nSelf: Y subdivism (partition) $P \circ f R = R_1 \cup R_2 \cup \cdots \cup R_n$

\nOne can find points $(x_k, y_k) \in R_k$, f as any k , such that both x_{k} , y_k are rational.

\nThe corresponding. Riemann sum equals

\n $S_n(f, p) = \sum_{k=1}^{n} f(x_k, y_k) \Delta A_k = \sum_{k=1}^{n} 0 \cdot \Delta f_k = 0 \Rightarrow 0$ as $||f|| \gg 0$.

\nOn the other bound, we can also find $(x'_k, y'_k) \in R_k$ such that at the other bound, we can also find $(x'_k, y'_k) \in R_k$ such that Δf is the corresponding. Riemann sum equals

\n $S'_n(f, p) = \sum_{k=1}^{n} f(x_k, y_k) \Delta f_k = \sum_{k=1}^{n} 1 \Delta A_k$

\n $= \Delta x a \Rightarrow f R = 1$ as $||P|| \gg 0$

\nSince $S'_n(f, p) \Rightarrow 0 \neq 1 \iff S'_n(f, p)$, Δh is not integrable.

\nStep 1, Δh is not integrable.

\nThen f is not integrable over R , $(f_0 x_j) \ge 0$.

\nThen f is not integrable over R , $(f_0 x_j) \ge 0$.

If: In any partition P of R,
\nthen
$$
\tilde{u}
$$
 is a sub-rectuity

\n
$$
R_1 = I_0, \pi_1 J \times I_0 \leq I_1
$$
\n
$$
C_{\text{U60K}}
$$
\n
$$
(x_{i}, y_1) = (t_1^2, s_1^2) \in R_1
$$
\n
$$
(s_{\tilde{u} \tilde{u} \tilde{u}} \quad 0 < t_1^2 < t_1 < 1, 0 < s_1^2 < s_1 < 1)
$$
\n
$$
T_{\text{NML}}
$$
\n
$$
P_1 = \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}} \quad (x_{i}, y_{j}) = (t_1^2, s_1^2)
$$
\n
$$
= f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}} = \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i_{i}}}}
$$
\n
$$
= f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}} = \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}}
$$
\n
$$
= f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}} = \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}}
$$
\n
$$
= \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}}
$$
\n
$$
= \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}}
$$
\n
$$
= \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}}
$$
\n
$$
= \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}}
$$
\n
$$
= \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}}
$$
\n
$$
= \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}}
$$
\n
$$
= \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}}
$$
\n
$$
= \frac{1}{2} f(x_{i}, y_{i}) \triangle A_{i_{i_{i}}}
$$
\n
$$
= \frac{1}{2} f(x
$$

Prop1: Let R= [a,b]X[x,d]	Le a closed rectangle, and f(xg)
Le an integrable function on R, then f is bounded on R	
(i.e. $\exists M>0$ o s.t. " (f(xg)) \leq M, V(xg) \leq R")	
CF: Ouitted (egf above gives an idoa of proof.)	
Runark: From egs, "boundedness" is necessary, but not sufficient for integrability.	
For	Let R= [a,b]X[x,d]
For	Let R= [a,b]X[x,d]
Let a continuous function in R, then f is integrable on R.	
For	Outting (See proof in (variable case a MHH 2060 in an ideal of proof.)
But x-d	Autting a condition, function on dund rectangle in (Matt 2050 for 1-variable situation). (i) "Continuity" is sufficient, but not necessarily. (in) (in dual radius) bounded (Haps. 1e 2 are consistent)
Find 2050 for 1-variable situation). (ii) "continuity" is sufficient, but not necessarily. (iii) (on dord rectangle) It is a different in a closed rectangle with a "small" set of diladability. The points could a" is not a lower part of (MATH 4050 lead Asubgds)	
For us, we have	

Popz' Fu	fourtiin over daed rectangle
(a) bounded + "contiouous except {uïtely many points"	
\Rightarrow útegvalle	
(b) bounded + "Cartiouvas except {uïtely many differentiable	
\Rightarrow ûtegralle	

contains an ^R andbonded of fixy o otherwise

Furthermore, we have
\n
$$
\frac{Pup3:1a+R=Radx(C,d) \text{ be a closed rectangle}}{f(xy) \text{ and } g(xy) \text{ be } f(x\sinh x) \text{ and } g(x\sinh x) \text{ and } g
$$

Remark: This Prop3 implies that the set of integrable functions over R fains a "vecter space over IR", and " (double) integral " is linear (when the rectangle R is fixed)