Math 2230A, Complex Variables with Applications

1. Use established properties of moduli to show that when $|z_3| \neq |z_4|$,

$$\frac{Re(z_1+z_2)}{|z_3+z_4|} \le \frac{|z_1|+|z_2|}{||z_3|-|z_4||}.$$

- 2. Verify that $\sqrt{2}|z| \ge |Rez| + |Imz|$.
- 3. In each case, sketch the set of points determined by the given condition: (a) |z-1+i|=1 (b) $|z+i|\leq 3$ (c) $|z-4i|\geq 4$
- 4. Using the fact that $|z_1 z_2|$ is the distance between two points z_1 and z_2 , give a geometric argument that |z 1| = |z + i| represents the line through the origin whose slope is -1.
- 5. Use properties of conjugates and moduli established in Sec.6 to show that
 - (a) $\overline{z} + 3i = z 3i$
 - (b) $\overline{iz} = -i\overline{z}$
 - (c) $\overline{(2+i)^2} = 3 4i$
 - (d) $|(2\bar{z} + 5)(\sqrt{2} i)| = \sqrt{3}|2z + 5|$.
- 6. Sketch the set of points determined by the condition
 - (a) $\operatorname{Re}(\bar{z} i) = 2$
 - $(b)|2\bar{z} + i| = 4.$
- 7. Show that

$$\left| \operatorname{Re} \left(2 + \bar{z} + z^3 \right) \right| \le 4$$
 when $|z| \le 1$

8. By factoring $z^4 - 4z^2 + 3$ into two quadratic factors and using inequality (2), Sec. 5, show that if z lies on the circle |z| = 2, then

$$\left|\frac{1}{z^4 - 4z^2 + 3}\right| \le \frac{1}{3}.$$

- 9. Find the principal argument Argz when (a) $z = \frac{-2}{1+\sqrt{3}i}$; (b) $z = (\sqrt{3}-i)^6$.
- 10. Show that (a) $|e^{i\theta}| = 1$; $(b)\overline{e^{i\theta}} = e^{-i\theta}$.
- 11. Using the fact that the modulus $|e^{i\theta}-1|$ is the distance between the points $e^{i\theta}$ and 1(see Sec. 4), give a geometric argument to find a value of θ in the interval $0 \le \theta < 2\pi$ that satisfies the equation $|e^{i\theta}-1| = 2$.

1

- 12. By writing the individual factors on the left in exponential form, performing the needed operations, and finally changing back to rectangular coordinates, show that
 - (a) $i(1-\sqrt{3}i)(\sqrt{3}+i) = 2(1+\sqrt{3}i)$
 - (b) 5i/(2+i) = 1+2i

 - (c) $(\sqrt{3} + i)^6 = -64$ (d) $(1 + \sqrt{3}i)^{-10} = 2^{-11}(-1 + \sqrt{3}i)$.
- 13. Let z be a nonzero complex number and n a negative integer (n=-1, -2,...). Also, write $z=re^{i\theta}$ and m=-n=1,2,.... Using the expressions

$$z^m = r^m e^{im\theta}$$
 and $z^{-1} = \left(\frac{1}{r}\right) e^{i(-\theta)}$

verify that $(z^m)^{-1}=(z^{-1})^m$ and hence that the definition $z^n=(z^{-1})^m$ in Sec.7 could have been written alternatively as $z^n=(z^m)^{-1}$

14. Establish the identity

$$(z \neq 1)$$

 $1 + z + z^2 + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}$

and then use it to derive Lagrange's trigonometric identity:

$$1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin[(2n+1)\theta/2]}{2\sin(\theta/2)} \quad (0 < \theta < 2\pi).$$

- 15. Find the square root of (a) 2i; $(b)1-\sqrt{3}i$ and express them in rectangular coordinates.
- 16. Find the three cube roots $c_k(k=0,1,2)$ of -8i, express them in rectabgular coordinates, and point out why they are as shown in Fig. 12.

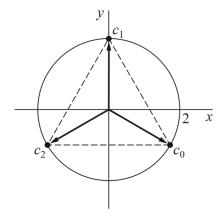


FIGURE 12

- 17. Find $(-8 8\sqrt{3}i)^{1/4}$, express the roots in rectangular coordinates, exhibit them as the vertices of a certain square, and point out which is the principal root.
- 18. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of certain regular polygons, and identify the principal root: (a) $(-1)^{1/3}$ (b) $8^{1/6}$.
- 19. Sketch the following sets and determine which are domains:
 - $(a)|z 2 + i| \le 1$
 - (b) |2z+3| > 4
 - (c) Im z > 1
 - (d) Im z = 1
 - (e) $0 \le \arg z \le \pi/4 (z \ne 0)$ (f) $|z 4| \ge |z|$.
- 20. In each case, sketch the closure of the set:
 - $(a) \pi < \arg z < \pi(z \neq 0)$

 - (b) $|\operatorname{Re} z| < |z|$ $(c) \operatorname{Re} \left(\frac{1}{z}\right) \le \frac{1}{2}$ $(d) \operatorname{Re} (z^2) > 0$.