Q.1
Let
$$f_n(x) := \frac{x^n}{n}$$
 for $x \in [0, 1]$. Show that the sequence (f_n)
of differentiable functions (onverges uniformly to a differentiable
function f on $[0, 1]$, and that the sequence (f'_n)
(onverges on $[0, 1]$ to a function g , but that
 $g(1) \ddagger f'(1)$.
Solution:
For each $x \in [0, 1]$, $f_n(x) = \frac{x^n}{n} \rightarrow 0$ as $n \rightarrow \infty$
Let $f(x) = 0$, $\forall x \in [0, 1]$. It is clear that f is differentiable.
 \therefore fn \Rightarrow f pointnisely
Let $\varepsilon > 0$ and let $N \in \mathbb{N}$ so that $\frac{1}{n} < \varepsilon$ $\forall n \ge N$. (Archimedean)
 $poperty$
Then $\forall x \in [0, 1]$, nhen $n \ge N$, we have
 $|f_n(x) - f(x)| = |\frac{x^n}{n}| \le \frac{1}{n} < \varepsilon$
 \therefore fn \Rightarrow f uniformly.
For $x \in [0, 1]$, $f_n'(x) \rightarrow 0$ as $n \rightarrow \infty$.
For $x \in [0, 1]$, $f_n'(x) = 1 \rightarrow 1$ as $n \rightarrow \infty$.
Let $g(x) = \begin{cases} 0 \text{ for } x \in [0, 1] \\ 1 \text{ for } x^{-1} \end{bmatrix}$

Let I := [0,b] and let (f_n) be a sequence of functions on $I \rightarrow IR$ that converges on I to f. Suppose that each derivative f'_n is continuous on I and that the sequence (f'_n) is uniformly convergent to g on I. Prove that $f(x) - f(a) = \int_a^x g(t) dt$ and that f'(x) = g(x) for all $x \in I$. Solution:

Note that by the FTC,

$$f_n(x) - f_n(a) = \int_a^x f'_n(t) dt , \forall x \in I. - (*)$$
We want to take limits at both sides to yield the identities
required.
For each $x \in I$, $\lim_{n \to \infty} (f_n(x) - f_n(a)) = f(x) - f(a)$ by pointwise
convergence.
We want to show that $\lim_{n \to \infty} \int_a^x f_n'(t) dt = \int_a^x g(t) dt$
Since $f_n \to g$ uniformly, $\forall t \in [a,b]$, $\forall \epsilon > 0$, $\exists N \in N$ s.t.
 $|f_n(t) - g(t)| < \frac{\epsilon}{b-a}$.

$$\left| \int_{a}^{x} f'_{n}(t) dt - \int_{a}^{x} g(t) dt \right| = \left| \int_{a}^{x} (f'_{n}(t) - g(t)) dt \right|$$

$$\leq \int_{a}^{x} [f'_{n}(t) - g(t)] dt$$

$$< \int_{a}^{x} \varepsilon dt$$

$$= \frac{\varepsilon}{b^{-\alpha}} (x - \alpha)$$

$$\leq \frac{\varepsilon}{b^{-\alpha}} (b - \alpha)$$

$$= \varepsilon \quad \text{as } n \ge N$$

$$\therefore \lim_{n \to \infty} \int_{a}^{x} f'_{n}(t) dt = \int_{a}^{x} g(t) dt$$
Then by letting $n \to \infty$ at $(*)$, we have.
$$f(x) - f(\alpha) = \int_{a}^{x} g(t) dt \quad \forall x \in I.$$

Since fn' are continuous, g is cont. by unif. conv.
Differentiating both side w.r.t.
$$x$$
, $f'(x) = g(x)$ by FTC.

Q.3
Let
$$\{T_1, T_2, \dots, T_n, \dots\}$$
 be an enumeration of rational number
in I:= [0,1], and let $f_n: I \rightarrow IR$ be defined to be 1 if
 $x = r_1, \dots, r_n$ and equal to 0 otherwise. Show that f_n is
Riemann integrable for each $n \in \mathbb{N}$, that
 $f_1(x) \leq f_2(x) \leq \dots \leq f_n(x) \leq \dots$ and that $f(x) := \lim_{n \to \infty} (f_n(x))$ is
the Dirichlet function, which is not Riemann integrable on
[0,1].
Solution:
For each $x \in I \setminus \{r_1, \dots, r_n\}$, let $\mathcal{E}_x = \min_{x \in I} \{1x - r_1, 1x - r_n\}$ and
Ix be the \mathcal{E}_x -nod of x .
Then $f_n(y) = 0$ $\forall y \in I_x \Rightarrow \lim_{x \to \infty} f_n(y) = 0 = f_n(x)$.
 $\therefore f_n$ is continuous on $I \setminus \{r_1, \dots, r_n\}$.
 $\therefore f_n$ is continuous on $I \setminus \{r_1, \dots, r_n\}$.
 $\therefore f_n$ is necessing and $f(x) = \lim_{n \to \infty} f_n(x) = 0$
For each $x \in [0, 1] \cap \otimes^{\mathbb{C}}$, note that $f_n(x) = 0$ $\forall n$
 $\therefore (f_n(x))$ is increasing and $f(x) = \lim_{n \to \infty} f_n(x) = 0$
For each $x \in [0, 1] \cap \otimes_{x}$, $x = r_n$ for some $k \in \mathbb{N}$.
 $\therefore f_n(x) = 1$ for $n \geq k$.

(-(
$$f_n(x)$$
) is increasing and $f(x) = \lim_{n \to \infty} f_n(x) = 1$.

$$f(x) = \begin{cases} 1 & \text{for } x \in [0, 1] \cap \emptyset, which is the Dirichlet \\ 0 & \text{otherwise} \end{cases}$$

function.