Hyperbolic Solid Geometry
The Half-space Model
Def: Let
$$U = i g = \pm \pm \pm j = \pm, \pm, y \in \mathbb{R}, y > 0$$
?
be the upper thalf-space.
Let IM be the full Möbius group
 $Tg = (ag \pm b)(Cg \pm d)^{-1}$
where a, b, c, d are complex numbers s.t.
 $ad - bc = 1$
(complex $U \pm Ui$, complex $i \iff guaternion i$)
The pair (U, IM) models 3-divide typerbolic.
Geometry.

Note: One needs to show that for gEU, then TgEU (Pf: Omitted, infact, if g= z+yj, zeC, y>o then Tg=(lepactbd+bzc+azd)+yj EU)

Comparis	sion: hyperbolic plane geometry	Ayperbolic Solid Geometry
poùts	Xtyi, y≻o Upper Balf plane	(t+xi)+yj, y>0 = Z+yj (z=t+xiec) upper half-space
group	Möbius transformation (a b)(a b)(a d-b)(c d)(c d), a d-b(c=1) with $a, b, c, d \in \mathbb{R}$	Möbius transformation (a b), ad-bc=1 $(c d), d \in C$ with $a, b, c, d \in C$

I deals Elements : ideal points (points at infinity) $z = \pm + x \lambda \in \mathbb{C}$ $(\mathbf{x} \ \infty \in \widehat{\mathbf{C}})$

Planes and Lines

Hyperbolic straight lines = half circle or Euclidean straight line in TJ perpendicular to the "plane at infairly "(tx-plane)

The intersection of a hyporbolic plane with the plane at infinity is called the thorizon of the plane.

Parallelism

aypenbolic planes intersect
⇒ intersection = bypenbolic line
typenbolic planes do not intersect
(i) parallel: horizons are tangent
(ii) typenparallel: otherwise

Cycles and Spheres Cycle = Euclideau circle a straight line in V that is not perpendicular to the plane at infairing

(hyperbolic circles, toro cy des, and Appencycles es in 2-din.) Stuilary, sphore, thorosphere & typorspheres = Euclidean spheres and planes that ave not perpendicular to the plane at infinity, $\gamma = q(s) = t(s) + x(s)i + y(s)j$ Arc-longth: (S=parameter) asssb $L(x) = \int_{a}^{b} \frac{(x(s))^{2} + (x(s))^{2} + (y'(s))^{2}}{y(s)} dt$ Volume of a solid $R = \iiint \frac{dt dx dy}{y^3}$

Def: The set

$$\begin{aligned}
\sum = \left\{ T \in M \text{ bb} : T = e^{i\theta} \frac{z - z_0}{(t = z_0 z_0)} f_{usaml} \right\} \\
z_0 \in \mathcal{E}
\end{aligned}$$
is called the elliptic group.
The pair (\widehat{C} , \widehat{S}) models "elliptic geometry".

P, g are end points of a diameter,
then
$$z_1 = SP$$
, $z_2 = Sg$ are complex number.
⇒ $T z_1, T z_2$ are also complex. Sphere
 $S^{-1}T z_1 \approx S^{-1}T z_2$ are points on S^2
Then " of $T \in S$, then $S^{-1}T z_1 \approx S^{-1}T z_2$
are also end points of some diameter.
i.e. p, g end points of a diameter
⇒ $S^{-1}T SP \approx S^{-1}T S^{-1}g$ are ends points of
some diameter.
Def: In the model (C, S) of elliptic geometry,
a great circle is a circle C in the
complex plane such that of $z \in C$,
(i.e. $S^{-1}z \in C \Rightarrow$ diametrical opposite point

S(-==) EC) \Rightarrow S(C) is the intersection of the unit sphere with a plane passing thro the $-\beta'(\zeta)$ origin An elliptic straight live is an arc of great circle. Then infinitely many great circles passing through the g=155 North pole and South pole. So postulate 1 (of Euclidoan geometry) fails in elliptic geometry.

Good news is "there is no "parallel" lines" in elliptic geometry since any two great cordes intersect. Postulate 5 fails too. To make it a non-Euclidean geometry, we need to do "quotient", "Single "Elliptic Geometry: identify z diametrically opposite points at one single "point" in an abstract space. Mathematically: if I, Zd & diametrical opposite points on the sphere. then $\mathbb{C}_{d} = \{ [\overline{z}] = \{ \overline{z}, \overline{z}^{d} \} : \overline{z} \in \mathbb{C} \}$

$$\frac{1}{\frac{1}{2}}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$