Normal Form of a Möbius Transfamation

Let T = Mib transformation with 2 fixed points
$$
P^e
$$
?

\nSince (a) T fines $P * q$ and

\n(b) T maps clunes, and

\n(c) T maps clines passing $P * q$ to almost

\ndivies passing $P * q$.

\nThus, the following two terms of $P * q$.

\nThus, the following two terms of $P * q$.

\nThus, the following terms of $P * q$.

\nThus, the following terms of $P * q$ is a constant.

\nThus, the following equations are also important, and the following equations:

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and $P * q$ is a constant.

\nThus, the first term is $P * q$ and

Let $R(w) = STS(w)$ be the lift of T to the restanded) w-plane via S^1 .

$$
\pi_{mn} = STS^-(0) = ST(p) = S(p) = 0
$$

\n $\begin{cases}\nR(\infty) = STS^-(\infty) = ST(q) = S(q) = \infty \\
R(\infty) = STS^-(\infty) = ST(q) = S(q) = \infty\n\end{cases}$

Onethe other hand ^R is of the fam

$$
RW = \frac{awtb}{cwtd}
$$
, fa some a,b,c,dc C
with $ad-bc+0$

Then
$$
\{R(0)=0 \Rightarrow b=0
$$

\n $\{R(\omega)=\infty\} \xrightarrow{C=0}$
\n $\therefore RW = (\frac{a}{d})W$ $(\omega, d \neq 0 \text{ size of } a)$

Write
$$
\lambda = \frac{a}{d} \pm 0
$$
, we have

\n
$$
\boxed{Rw = \lambda w}
$$
\nSubstituting $\overline{u}t0$ $Rw = STS^{T}w$

\n
$$
\Rightarrow \quad \lambda (Sz) = STS^{T}(Sz) = S(\overline{z})
$$
\n
$$
\Rightarrow \quad \lambda (Sz) = STS^{T}(Sz) = S(\overline{z})
$$
\n
$$
\overline{\lambda} \overline{z-q} = \overline{z-q} \quad (\lambda \overline{z})
$$
\nin called the numal form of T.

\nWe see that T can be understood as comp equation of T.

\nWe see that T can be understood as comp equation of S spondions:

\n(i) multiplication by a range complex on at.

\n(ii') sw ab ba back to the fixed points.

Case 1
$$
\in
$$
 $\text{Luptic transform } (12=1)$
 $\lambda = e^{i\theta} \Rightarrow Rw = e^{i\theta}w \text{ is a rotation about}$

Case 2 Hyperbolic transformation (270) $RW = \lambda w$, $\lambda > 0$ is a homothetic transformation \Rightarrow the action of T is to move points along the Steiner circle of the 1st kind Moreover, T sends Steiner circles of the 2nd kind to (another) Steiner circles of the 2nd kind

Case3 Loxodromic Transfunction
\n
$$
\lambda = ke^{i\theta}, k\ne 1, k>0, and $\theta \ne 0$ (mod 2T)
$$

\naction of T = a combination of the motions of
\n*an elliptic and a hyperbolic two-fawat*

Conclusions

is ² kinds of Sterner circles generalised polar coordinates forMobius Geometry Mobius transformations with ² fixed points transform each Steiner circle wrt thefixed pants to Itselfaanother Steiner Circle ofthe same kind ^w rt the same fixed point Suiplestlypers of transformations with ² fixedpoints Elliptic rotation more points along Steiner circles of 2nd kind Hyperbolic scaling move points along Steiner circles of 1st kind Loxodromic combination ofelliptic hyperbolic ⁵ Normalfamy expression ofthe relationship between the transformation and the Steiner circle coordinate system determined byits fixed points

Parabolic Transformation (Transformation with 1 fixed point) Let T be a transformation with one fixed point P . $ConsiUPF$ $W=57$ T

Then $S(p) = \infty$ we $\hat{\mathbb{C}} \longrightarrow$ And $R = S15$ \overline{S} \downarrow satisfies $R(\omega) = STS(\omega)$ $Z\in\widehat{\mathbb{C}}\longrightarrow\widehat{\mathbb{C}}$ $=ST(p) = SP = \infty$ Using the fam $RM = \frac{aw + b}{cw + d}$, $a, b, c, d \in \mathbb{C}$ with $ad-bc \neq 0$

we have $R(\omega) = \infty \implies C = 0 \quad (\Rightarrow d \neq 0, \alpha \neq 0)$

Hence $RW = \left(\frac{a}{d}\right)w + \left(\frac{b}{d}\right)$ Since R has no other fixed pour otherwiseTwill have 2 fixed $p^{\mu_{i1}}$. $W = \left(\frac{a}{d}\right)W + \frac{b}{d}$ has no solution in $\mathbb C$

Adding the family of lines orthogonal to line paralleltop we have ^a coordinate system on W-plane which gives a coordinate system on the z-plane called a generalized Cartesian coadunate system

Ch7 Hyperbolic Geometry This is the non Euclidean geometry discovered by Gauss, Bolyai, and Lobatchersky. There are ² models of hyperbolic geometry to be discussed in this course: disk model and upper half-plane model Remark: • Unit disk $D = \{ z \in \mathbb{C} : |z| < |x| \}$ \bullet Upper half-plane $U = \{z \in \mathbb{C} : z = x + iy, y > 0\}$

Diskmodel The groupoftransformations consists of all Mobius transformations that mapD sdf It is clear that these transformations form ^a transformation group with underlying space ^D Ext To find this group explicitly we let ^T CMob mapping ID onto itself

Hence, we have $TZ = \alpha \frac{Z-t_0}{Z-\frac{1}{Z}}$ fa some deliver $= (-\alpha \overline{z_{0}}) \cdot \frac{\overline{z}-\overline{z_{0}}}{1-\overline{z_{0}}z}$ = λ $\frac{z-z_0}{1-\overline{z}_0z}$ where $\lambda = -\alpha\overline{z}_0$

Suppose now
$$
|\overline{z}|=1
$$
, then $|\overline{z}|=1$
\n
$$
|=|\overline{z}|=|\lambda|\frac{\overline{z}-\overline{z}_{0}}{|\overline{-\overline{z}_{0}}\overline{z}|}
$$
\n
$$
=|\lambda|\frac{|\overline{z}-\overline{z}_{0}|}{|\overline{z}-\overline{z}_{0}\overline{z}|}
$$
\n
$$
= |\lambda| \frac{|\overline{z}-\overline{z}_{0}|}{|\overline{z}z-\overline{z}_{0}\overline{z}|}
$$
\n
$$
= \frac{|\lambda|}{|\overline{z}|} \cdot \frac{|\overline{z}-\overline{z}_{0}|}{|\overline{z}-\overline{z}_{0}|} = |\lambda|
$$
\n
$$
\Rightarrow \lambda = e^{i\theta} \text{ for some } \theta \in \mathbb{R}.
$$

Hence we

22f: let D be the unit disk in the complex plane.

\n32f: Let H1 be the set of transfunctions of D of the form
$$
Tz = e^{T\theta} \frac{z-z_0}{1-\overline{z}_0z}
$$
, where $|z_0| \leq 1$, $\theta \in \mathbb{R}$.

\n42g: The pair (ID, HH) model, hyperbolic geometry.

\n5. The set D will be called the hyperbolic plane.

\n6. The group IH is the hyperbolic group.

Note: IH is a "subgroup" of the Misbius group M and $D \subset \mathbb{C}$ => Ayperbolic geometry is a "subgeometry" of Möbius geometry. Hence Every statement true in Mob geometry is also true " in hyperbolic geometry!

(Hyperbolic) Straight lines

1

lef A (hyperbolic) straight line is (the part inside the nust disk) a Euclidean circle or Euclidean straight line in the complex plane that interacts the unit circle at a right angle.

