
 

PI ofthe FundamentalTheorem ofMobius Geometry

The formula
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provided atthe last lecture canbe seen from the

following steps
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Then 5 2561 is a Mobius Transformation

such that Sz VIT V Tze

041 W

Similarly S7z Wa S 2 5 Ws

Hence we've proved that facing distinctzb3Zs

and distinct Wi Wa Wz I a Mobius transformation

S such that Szi Wi E 1,33

Ex Why this givesthe formula

Finally Uniqueness

If Vi Wz are Mobiustransformations at

Uh Zi Wi E 12,3 he1,2

Then U Vz

Pfof Final step
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Vi ov has at least 3 fixed points

as 2 i t Z are distinct

By lemma of the last lecture J
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Corollarye All figures consisting of 3 distinct
points are congruent in Mobius geometry

Remark This corollary Mobius geometry is not

isomorphic to Euclidean geometry and

Euclidean distance is not an invariant

InrariantsofMidbiasGeometing

Anglemeasurement

Mobiustransformations are conformal

Euclidean angle measure is an invariant



of Mobius Geometry

CrossRa

is the following function

1

Def The cross ratio

of 4 extended complex variables
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PI By the remark above

TZ 2,21,7373 is the unique Mobius

transformation such that
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Thin The cross ratio CFGZyZs isreal

if andonly if the 4 points lie on a

Euclidean circle a straight line
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In any case Tz Tz Tz5fzs lie on the x axis

Therefore Z ZyzzZs lie on a Euclidean circle

or a straight line since Mobius transforms

maps linesfirdes to lines circles

Clines

Def Asubset C of the complexplane is adime
if C is a Euclidean circle a Euclidean

straight line
Tim If C is a dine then TCC is a

cline t TEM

Pf Fx

Renick AH circlesandstraightlinesary
to each other in Mobius



geometry ci circle determined by 3 parts

s straight line isjust a circle passing
through W

Ext

Symmetry

Def let C be a clone passing through 3

distinct points Zi Zz Z 3 Two points

z and are called symmetric with

respectte C if
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then zt za 22,73 7533
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whichis the usual mirror symmetry of t across
the x axis Z

I z't

Rmarke i ds In this case we see that one can take

any 3 points on the X axis to give the

symmetry wrt X axis Sanitary this is

true for any dine C
dis z z symmetric wit C
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Ch6 Steinercircles

Familiesofcluies

let p g C Q the family of all lines passing

through p and g is called
the Steinercircles

ofthefirstkindy with respect to points p
and f

co

w plane

consider the transformation

W Sz ZI
z q

Then p o ie Sp o

g t b lie SE n



Recall that Mobius transformations takes lines to cling

the image of the circles clines in the Steiner

circles of the 1st kind wrt p q fam the

Steiner circles of the 1stkind wrt o o

In the W plane it is easy to see that there is

another family of chutes orthogonal to the

Steiner circles ofthe 1st kind namely

thefamily of circles centered at w
O

Thepull back of these circles I lw k k's inthe
w plane by s I form a family of Ivies on

Z plane which is called the Steinercircles

othud Court p f
also called circles of Apollonius



1stkind

am

By definition the Steinercircles of 2nd kind
rt p f have the equation i

t I

Z

Remarked The families of Steiner circles of Iste
2nd kinds can be regarded as a generalization

of polar coordinates to Mobius geometry


