Abstract Geometries and their Models

Def: Two geometries
$$(S_1, G_1) \ge (S_2, G_2)$$
 are
models of the same abstract geometry if
there is an invertible covering transformation
 $\mu = S_1 \rightarrow S_2$ such that
 $T_1 \in G_1 \implies \mu \circ T_1 \circ \mu^{-1} \in G_2$
 $T_2 \in G_2 \implies \mu^{-1} \circ T_2 \circ \mu \in G_1$
 $S_1 \xrightarrow{T_1 \oplus S_1} \qquad S_1 \xrightarrow{S_1 \oplus S_2} \qquad S_2 \xrightarrow{S_2} \qquad S_2$
 $\mu \circ T_1 \circ \mu^{-1} \in G_2$
 $S_2 \xrightarrow{T_2 \oplus G_2} \qquad S_2 \xrightarrow{T_2 \oplus G_2} \qquad S_2$
 $\mu \circ T_1 \circ \mu^{-1} \in G_2$
 $S_2 \xrightarrow{T_2 \oplus G_2} \qquad S_2 \xrightarrow{T_2 \oplus G_2} \qquad S_2$

Note: In this case (SI,GI) and (SZ,GZ) are called isomorphic and m is called an isomorphism.

eg:
$$S_1 = \{ \neq \in \mathbb{C} : |\neq| < | \}$$

 $G_1 = \{ \text{ rotations around the origin } \}$
 $S_2 = \{ \neq \in \mathbb{C} : |\neq -5| < 3 \}$
 $G_2 = \{ \text{ rotations around } \neq =5 \}$
Then (S_1, G_1) and (S_2, G_2) are geometries. (clock!)
(clusticler $\mu: S_1 \rightarrow S_2$
 $\neq l \Rightarrow 3\neq +5$ (cluck: $|\mu(\neq)-5| < 3$)

Let
$$T_i \in G_i$$
, i.e. $T_i = rotation around 0$
 $\Rightarrow T_i \neq = e^{i\theta_i} \neq for some \theta_i \in \mathbb{R}$.

Then USES2

$$\mu \circ T_{1} \circ \mu^{-1}(5) = \mu \circ T_{1}(\mu^{-1}(5))$$
$$= \mu \circ T_{1}(\frac{5-5}{3})$$
$$= \mu(e^{i\Theta_{1}}(\frac{5-5}{3}))$$

$$= 3 \cdot \left(e^{i\theta_{1}} \left(\frac{5 \cdot 5}{3} \right) \right) + 5$$

$$= e^{i\theta_{1}} \left(5 \cdot 5 \right) + 5$$
which is a rotation of θ_{1} degree around $7 = 5$

$$\therefore \quad \mathcal{M} \circ T_{1} \circ \mu^{-1} \in \mathbb{G}_{2}$$
Similarly for the other direction.
$$\therefore \quad \left(S_{1}, \mathbb{G}_{1} \right) \approx \left(S_{2}, \mathbb{G}_{2} \right) \text{ are isomorphic.}$$

Ch5 Möbius Geometry Stereographic

$$Def : Let \widehat{\mathbb{C}}(a \mathbb{C}^+) = \mathbb{C} \cup 1005 \cong \mathbb{S}^2$$

be the extended complex plane (including oo),
and let IM be the set of transformations
of the fam
 $W = Tz = \frac{az+b}{cz+d}$
where $a, b, c, e, d \in \mathbb{C}$, and
the determinant of T , $ad-bc \neq 0$.
Such a transformation is called a Möbius transformation
(or linear fractional transformation).
The pair ($\widehat{\mathbb{C}}$, IM) models Möbius Geometry.
Remark : Möbius transformations include all rotations,

Remark : Möbius transformations include all rotations,
franslations, Romothetic transformation, and
inversion:
• rotation :
$$W = e^{i\theta} z$$
; $a = e^{i\theta}$, $b = c = 0$, $d = 1$
(then $ad - bc = e^{i\theta} \neq 0$)

• translation: ?
$$(Ex!)$$

• homothetic transformation: ?
• inversion = $W = \frac{1}{7}$; $a = d = 0, b = c = 1$
 $(then ad-bc = -1 \neq 0)$

Conversely

$$W = T = \frac{az+b}{cz+d} = \begin{cases} \frac{a}{c} - \frac{ad-bc}{c^2} \left(\frac{1}{z+\frac{d}{c}}\right), & i \in z \neq 0 \\ \frac{a}{c^2} - \frac{ad-bc}{c^2} \left(\frac{1}{z+\frac{d}{c}}\right), & i \in z \neq 0 \end{cases}$$
(check!)

$$\left(\frac{a}{d}\right)z + \left(\frac{b}{d}\right), & i \in z \neq 0 \\ \frac{ad-bc}{c^2} \left(\frac{1}{z+\frac{d}{c}}\right), & i \in z \neq 0 \\ \frac{ad-bc}{c^2} \left(\frac{1}{z+\frac{d}{c}}\right), & i \in z \neq 0 \end{cases}$$

Proof of (C, M) is a geometry (i) \forall Möbius transformation $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ $T(\infty) = \int_{-\infty}^{-\infty} \frac{\alpha}{c} , \quad \text{if } C \neq 0$ $\int_{-\infty}^{-\infty} \frac{\alpha}{c} , \quad \text{if } C = 0$ $T(-\frac{d}{c}) = \omega \quad \text{if } c \neq 0$: T is well-defined on Ĉ (ii) $Id_{\widehat{C}}: \mathbb{Z} \mapsto \mathbb{Z}$ (ie. $W = \mathbb{Z}$; $Q = 1 = d_{b} = C = 0$) ad-bc = 1 = 0) is a Möbius transformation. (iii) Let $T = \frac{a + b}{r + d}$, $S = \frac{e + f}{q + h}$ with ad-bc = 0 and eff-gf=0 Hen $T_0S(z) = T(Sz) = \frac{\alpha(Sz) + b}{c(Sz) + d}$ $= \frac{\alpha\left(\frac{e^{\mp}+f}{g^{\mp}+h}\right)+b}{c\left(\frac{e^{\mp}+f}{g^{\mp}+h}\right)+d}$

$$= \frac{a(ez+f)+b(gz+h)}{c(ez+f)+d(gz+h)}$$
$$= \frac{(ae+bg)z+(af+bh)}{(ce+dg)z+(cf+dh)}$$

Note
$$(ae+bg)(cf+dft) - (af+bft)(ce+dg)$$

= $(ad-bc)(eft-gf) \neq 0$
 \Rightarrow ToS is a Möbius transformation
(iv) From (iii), we see that are can appociate a
 2×2 complex matrix $\begin{pmatrix} ab \\ cd \end{pmatrix}$ to fee Möbius
transformation $W=Tz = \frac{az+b}{cz+d}$
Then for $T \iff \begin{pmatrix} ab \\ cd \end{pmatrix}$
 $S \iff \begin{pmatrix} e \\ g \\ ft \end{pmatrix}$

we have
$$T_{\circ}S \iff \begin{pmatrix} ae+bg & aftby \\ cetdg & cftdh \end{pmatrix}$$

= $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix}$

(and determinant of
$$T \iff dot \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
)
 $= det (T = S) = det (T) dot(S)$
Hence T^{-1} should correspond to
 $\frac{1}{ad+bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1}$
 $\therefore = T^{-1}w = \frac{dw-b}{-cw+a}$ is a Möbius transformation.
All together, $(E = IM)$ is a geometry. X
Remark : $k \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix}$ $k \in C \cap S$
 $\iff T = \frac{(ka)z + (kb)}{(kc)z + (kd)}$
 $= \frac{az+b}{cz+d} \iff \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
Two different matrixes associated to the same
transformation ! (Infact, infaitely many)

To overcome this, we can number dige so that
all Mobilius transformation
$$w=Tz = \frac{az+b}{cz+d}$$

satisfying $[ad-bc=1]$
But still, we have
 $\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \iff Tz = \frac{az+b}{cz+d}$
Since $det [-\begin{pmatrix} a & b \\ c & d \end{pmatrix}] = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 1$
Then the group of Mobilius transformations corresponds
to the matrix group $d \begin{pmatrix} a & b \\ c & d \end{pmatrix} = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 1$,
 $a, b, c, d \in C$
 $a, b, c, d \in C$
is called the special linear group with complex
outries $SL(z, C)$.

$$\Rightarrow M = SL(2, C) \left\{ \pm I \right\} \left(a \text{ quotient group} \right)$$

Fixed Points of Möbius Transformations
Def. A fixed point of a transformation T is a
point
$$z$$
 such that
 $Tz = z$.

eg: Let $TZ = \frac{aZ+b}{CZ+d}$ (ad-bc+0)then $TZ = Z \iff \frac{aZ+b}{CZ+d} = Z$ $\iff CZ^2 + (d-a)Z - b = 0$ (*) If C+0, (*) thas |a|Z roots $\implies T$ thas |a|Z roots $\implies T$ thas |a|Z fixed pairts (in C cC) $(note: or is not fixed as <math>T(s) = \frac{a}{2}$) If C=0, (*) that $|Solution|Z = \frac{b}{d-a}$ provided a+d.

Note that in this case,
$$T = Id \in \mathbb{Z}$$

 $\Rightarrow T$ thas Z fixed puts $\frac{b}{d-a} = \infty$ in \widehat{C}
(provided $a \neq d$)
If $(=0, a=d, then ad-bc \neq 0 \Rightarrow a=d \neq 0$
and $TZ = \frac{q \neq + b}{c \neq + d} = z + \frac{b}{d}$
thus, unique fixed point ∞ , if $b \neq 0$
(infinitely many fixed parts, if $b=0$
(infact, $\forall z \in \widehat{C} \ge T = Id \in$)

Then (The Fundamental Theorem of Möbius Geometry)
There is a unique Möbius transformation taking any
3 distinct (extended) camplex numbers
$$z_1, z_2, z_3$$

to any other 3 distinct (extended) complex
numbers W1, W2, W3.
(i.e. $\exists ! T \in M \ s, t. Tz_i = W_1, Tz_2 = W_2, Tz_3 = W_3$)
The required Möbius transformation is given by

$$\frac{W - W_2}{W - W_3} \cdot \frac{W_1 - W_3}{W_1 - W_2} = \frac{z - z_2}{z - z_3} \cdot \frac{z_1 - z_3}{z_1 - z_2}$$
(Pf : next time)