

Related Geometric Nations

Algebra (1) Modulus $|z| = \int x^2 + y^2$

(Z)
$$|Z-W| = \int (X-S)^2 + (Y-T)^2$$

$$\frac{\text{Geometry}}{\text{Distance to the origin}}$$

$$\int_{Q} \frac{Z = (x,y)}{|Z|}$$
Distance between 2 parts
$$\int_{W} \frac{(x,y)}{|Z|} \frac{|Z-W|}{|Z|}$$
Reflection across the x-axio
$$\int_{Z} \frac{Z}{|Z|}$$

$$\frac{\text{Inner product}}{|Z|} = \cdot W$$

Pemarh: Properties of modulus:
(a) Homogeneity:
$$|kz| = |k||z|$$
, $\forall k \in \mathbb{R}$
and $z < px$.

Facts: (i) (ZW)U=Z(WU) associative law (ii) Let O=(0,0). Then $\forall \neq \neq 0$, there exists a cpx number denoted by $\frac{1}{z}$ Such that $\overline{Z} \cdot \frac{1}{7} = \frac{1}{Z} \cdot \overline{Z} = 1$ Polar fam: Z = X + iy = Y((00 + isin 0)) $=|z|e^{i\theta}$ where $(r, \theta) = polar (ordinates for (x,y) \in \mathbb{R}^2$ $(\Theta \Im not defined for = 0)$ Note: We've used the Euler formula $e^{i\theta} = \cos\theta + i\sin\theta$ (You may simply regard e^{ile} as a short form for (00+I pin 0) In general, we have Def: e^z = e^{x+iy} def e^x (coytiany)

Fact:
$$e^{\mp t W} = e^{\mp} e^{W}$$

In particular $e^{i(\theta_1 + \theta_2)} = e^{i\theta_1} e^{i\theta_2}$
(compound angle formula)
Def: Let $= re^{i\theta}$ ($= \pm 0$). Then the
angument of $\neq i$
 $arg = arg(=) = \theta$ (mod $= 2i$)

The Geometry of
$$(px multiplication)$$

If $z = |z|e^{i\theta}$, $w = |w|e^{i\mu}$
then $zw = (z||w|e^{i(\theta+\mu)})$
 $= |zw| = |z||w|$
 $|zw| = |z||w|$
 $|arg(zw) = arg(z)t arg(w) (mod 2\pi)$
 $\therefore Cpx multiplication = (1, scaling, follows by a
(ii) rotation$

Ch3 Geometric Transformation (of the plane)
Def: A transformation is a one-to-one (onto)
function (mapping) whose image and
domain are the same set.
eg:
$$f: \mathbb{C} \to \mathbb{C}$$
 is a transformation
 $\exists t \Rightarrow \exists + (1+2i)$
Pf: (1) one-to-one (injective)
(ine. if $z_{1}, z_{2} \in \mathbb{C}$ with $f(z_{1}) = f(z_{2})$
then $z_{1} = z_{2}$
 $z_{1} = z_{2}$
 $z_{1} = z_{2}$
 $z_{1} = z_{2}$
 $z_{2} = f = z_{2}$
 $z_{1} = z_{2}$
 $z_{2} = z_{2}$
 $z_{1} = z_{2}$
 $z_{2} = z_{2}$
 $z_{3} = z_{2}$
 $z_{4} = z_{5} = 0$
 $z_{1} = z_{2}$
 $z_{2} = z_{2}$
 $z_{3} = z_{4}$
 $z_{5} = z_{5} = 0$
 $z_{1} = z_{2}$
 $z_{2} = z_{2}$
 $z_{3} = z_{4} = z_{5} = 0$
 $z_{5} = 0$
 $z_{5} = z_{5} = 0$
 $z_{5} = 0$
 $z_{5} = z_{5} = 0$
 $z_{5} = 0$
 z_{5}

More generally,
$$\forall b \in \mathbb{C}$$
, the transformation
 $C \longrightarrow C$ is called a transformation
 $Z' \longrightarrow Z'+b$
 $Z' \longrightarrow Z'+$

 $eg : (Gpx) Inversion (W=\pm)$ $T = \mathbb{C} \setminus \{0\} \longrightarrow \mathbb{C} \setminus \{0\}$ is a transformation (check!) (i) Points inside the unit circle are transformed to points outside the circle. Pf = If Z = pt. inside the unit circle fren 12/<1 where $\theta = 0.197$ \Rightarrow $W = \frac{1}{z} = \frac{1}{|z| |z|}$ $=\frac{1}{171}e^{-i\theta}$ $\implies (W \models \frac{1}{|f|} >)$:. W is outside the mit circle. (ií) Semilarly, pts outside the mist circle are transfamed to pts. inside the unit circle

$$= \frac{\chi}{\chi^2 + y^2} - \lambda \frac{y}{\chi^2 + y^2}$$

 $\int S = \frac{X}{X^2 + y^2}$ $\int t = \frac{-y}{x^2 + y^2}$ ie. (i) $S^{2}+t^{2} = \frac{1}{\chi^{2}+y^{2}} \left(|W|^{2} = \frac{1}{|z|^{2}} \right)$ Then $(ii) \quad as-bt = -c(s^2+t^2) \quad (check!)$ Case 1: If ax+by+c=0 is a straight line possing thro O, then (=0 $\Rightarrow as-bt=0$ W=(S,t) belonge to a straight line possing thro. 0. W Z ax+by=0 い=ち qs-6£=0

Case 2 C+O (straight line not passing thro. 0)
Then
$$s^{2}+t^{2}+(\frac{a}{c})s-(\frac{b}{c})t=0$$

 $\Rightarrow (s+\frac{a}{2c})^{2}+(t-\frac{b}{2c})^{2}=\frac{a^{2}+b^{2}}{4c^{2}}=(\underbrace{\sqrt{a+b^{2}}}{2|c|})^{2}>0$
 \therefore W=(s,t) belongs to the circle centered at
 $(-\frac{a}{2c}, \frac{b}{2c})$ with radius $\frac{\sqrt{a^{2}+b^{2}}}{2|c|} \approx \frac{1}{2|c|}$
Special cases
(i) Haigontal lines $y=k$ (i.e. $a=0, b=1, c=-k$)
 \Rightarrow Circle to $s^{2}+(t+\frac{1}{2b})^{2}=(\frac{1}{2b})^{2}$

Conformality (保角)

Def : A transformation f is conformal if it preserves angles

i.e. If $\forall i, \forall z$ are curves passing thro. a point zthen the angle between $\forall i$ and $\forall z$ at z is the same as the angle between $f(\forall_i) \notin$ $f(\forall_i)$ at f(z).

09: Rotations, translations & homothetic transformations are conformal.

Thm: Inversion is conformal at every ZEC19

$$Pf:(I) \stackrel{d}{dz} W = \frac{d}{dz} \left(\frac{L}{z}\right) = -\frac{L}{z^{2}} (\pm 0)$$

$$\Rightarrow Conformal . (dof product))$$

$$\Rightarrow Conformal . (z) inner product (z) inner$$

Stereographic Projection

$$S^{2} = \{(a,b,c): a^{2}tb^{2}tc^{2}=1\}$$

$$N = \begin{bmatrix} (a,b,c): (a,b,c) \\ R^{2} \equiv C \\ Y \\ S(a,b,c) = (x,y,0) \\ x \\ S(a,b,c) =$$

ie.
$$(X,Y,0) = (0,0,1) + t_0 [(a,b,c) - (0,0,1)]$$

 $\implies t_0 = \frac{1}{1-c}$ and hence
 $X = \frac{a}{1-c}, \quad Y = \frac{b}{1-c}$
Thm: Stereographic projection is confamal
(Pf: Omitted)