
 

MATH 1010E Notes 

 

Week 11 

 

Topics covered 

 Riemann Sum 

 Fundamental theorem of calculus 

 Applications 

 

Until now, when we talked about integral, we mean “indefinite integral” or the 

solutions to the differential equation 𝐹′(𝑥) = 𝑓(𝑥). 

 

We have denoted such integrals by the symbol ∫ 𝑓(𝑥)𝑑𝑥. 

 

We also noticed that ∫ 𝑓(𝑥)𝑑𝑥 and ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶 are both solutions to the 

differential equation 𝐹′(𝑥) = 𝑓(𝑥). 

 

But “integration” has another meaning. It is the “computation” of “area” under the 

curve 𝑦 = 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏. 

 

Q: How to define this kind of integral? What is its name? 

A: It is called definite integral and is defined as follows: 

 

Suppose we have a continuous function 𝑓: [𝑎, 𝑏] → ℝ and we want to compute the 

“area” under the curve 𝑦 = 𝑓(𝑥),  for 𝑥 ∈ [𝑎, 𝑏]. The we can do this by the 

following method: 

 

(Step 1) Partition the interval [𝑎, 𝑏] into 𝑛 subintervals defined by the points  

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑖−1 < 𝑥𝑖 < ⋯ < 𝑥𝑛 = 𝑏 

 

This way, we have 𝑛 subintervals, i.e. [𝑥0, 𝑥1], [𝑥1, 𝑥2], ⋯ , [𝑥𝑖−1, 𝑥𝑖], ⋯ , [𝑥𝑛−1, 𝑥𝑛]. 

 

(Step 2) Define the symbol 𝕝𝑃𝕝 (you can call it “length” of 𝑃) by letting 

𝕝𝑃𝕝 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑚𝑜𝑛𝑔 𝑥1 − 𝑥0, 𝑥2 − 𝑥1, ⋯ , 𝑥𝑖 − 𝑥𝑖−1, ⋯ , 𝑥𝑛 − 𝑥𝑛−1  

Therefore, if 𝕝𝑃𝕝 → 0, then all the numbers 𝑥1 − 𝑥0, 𝑥2 − 𝑥1, ⋯ , 𝑥𝑖 − 𝑥𝑖−1, ⋯ , 𝑥𝑛 −

𝑥𝑛−1 will go to zero. 

 



(Step 3) Construct 𝑛 rectangles “under” the curve 𝑦 = 𝑓(𝑥), by choosing as 

heights the numbers 𝑓(𝜉𝑖), where 𝜉𝑖 is any number between 𝑥𝑖−1 and 𝑥𝑖 . 

Choose widths to be the numbers 𝑥𝑖 − 𝑥𝑖−1. 

 

Such rectangles have then areas equal to 𝑓(𝜉𝑖) ⋅ (𝑥𝑖 − 𝑥𝑖−1) 

The sum of these areas is then equal to  

∑ 𝑓(𝜉𝑖) ⋅ (𝑥𝑖 − 𝑥𝑖−1)

𝑛

𝑖=1

 

or equal to  

∑ 𝑓(𝜉𝑖) ⋅ Δ𝑥𝑖

𝑛

𝑖=1

 

if we let Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1. 

 

(Step 4) Now one can show (with more mathematics) that for continuous function  

𝑓, as 𝕝𝑃𝕝 → 0, the following limit is always a finite number: 

lim
𝕝𝑃𝕝→0

∑ 𝑓(𝜉𝑖) ⋅ Δ𝑥𝑖

𝑛

𝑖=1

 

 

 

(Step 5) Finally, we give a symbol to this limit and call it ∫ 𝑓(𝑥)𝑑𝑥.
𝑏

𝑎
 

In conclusion, we have (for continuous function 𝑓: [𝑎, 𝑏] → ℝ) the following: 

lim
𝕝𝑃𝕝→0

∑ 𝑓(𝜉𝑖) ⋅ Δ𝑥𝑖

𝑛

𝑖=1

= ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

. 

 

Remark: This kind of sum are called Riemann sums. 

This limit, ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called the “definite integral” of 𝑓 for 𝑎 ≤ 𝑥 ≤ 𝑏. 

 

Example 

Consider the function 𝑓(𝑥) = 𝑥,  for 0 ≤ 𝑥 ≤ 1. 

 

Partition [0,1] into 𝑛 subinterval of the form: 

[0,
1

𝑛
] , [

1

𝑛
 ,

2

𝑛
] , ⋯ , [

𝑖 − 1

𝑛
,

𝑖

𝑛
] , ⋯ , [ 

𝑛 − 1

𝑛
,
𝑛

𝑛
] 



Each of these subintervals has length 
1

𝑛
, therefore 𝕝𝑃𝕝 =

1

𝑛
, which means as 𝕝𝑃𝕝 =

1

𝑛
→ 0,  it follows that 𝑛 → ∞. 

 

Next, consider the following sum of areas of rectangles, where we choose 𝜉𝑖 = 𝑥𝑖 =

𝑖

𝑛
 , then we have the sum 

∑ 𝑓(𝑥𝑖) ⋅ Δ𝑥𝑖 =

𝑛

𝑖=1

∑ 𝑓 (
𝑖

𝑛
) ⋅

1

𝑛
=

𝑛

𝑖=1

∑
𝑖

𝑛
 ⋅

1

𝑛
=

𝑛

𝑖=1

∑
𝑖

𝑛2

𝑛

𝑖=1

 

=
1

𝑛2
 ∑ 𝑖

𝑛

𝑖=1

=
1

𝑛2
⋅

(1 + 𝑛)𝑛

2
=

𝑛 + 1

2𝑛
= (

1

2
) (1 +

1

𝑛
) 

Hence, as 𝕝𝑃𝕝 → 0, it follows that 𝑛 → ∞ and also lim
𝕝𝑃𝕝→0

∑ 𝑓(𝑥𝑖) ⋅ Δ𝑥𝑖 =
𝑛

𝑖=1

(
1

2
) lim

𝑛→∞
(1 +

1

𝑛
) =

1

2
. 

 

Remark: The choice of the points 𝜉𝑖 is arbitrary. One can choose (i) the left 

endpoint, (ii) the right endpoint, (iii) the mid-points, (iv) the absolute maximum 

points, (v) the absolute minimum points etc. 

 

No matter what one chooses for 𝜉𝑖, the limit remains the same. 

 

Properties of Definite Integrals 

The following properties of definite integrals are consequences of the area of a 

rectangle. 

 

1. ∫ (𝑓(𝑥) ± 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
 

2. ∫ 𝑘𝑓(𝑥)𝑑𝑥 = 𝑘 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
 

3. ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑐

𝑐

𝑎

𝑏

𝑎
 

4. ∫ 𝑓(𝑥)𝑑𝑥 = − ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏

𝑏

𝑎
 

 



One also has the following simple inequality (which hasn’t been mentioned in the 

lectures), 

5. If 𝑓(𝑥) ≤ 𝑔(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, then ∫ 𝑓(𝑥)𝑑𝑥 ≤ ∫ 𝑔(𝑥)𝑑𝑥.
𝑏

𝑎

𝑏

𝑎
 

 

Remark: Using the above-mentioned Riemann Sum method to find area under a 

curve 𝑦 = 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏 is very tedious. There is a more effective method, which 

computes area by (i) first compute an indefinite integral 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶, 

then (ii) compute the number 𝐹(𝑏) − 𝐹(𝑎). This number is the the area wanted. 

 

This method is called the Fundamental Theorem of Calculus.  

 

Remark: This method doesn’t always work. For some functions, such as 𝑓(𝑥) = 𝑒𝑥2
, 

one cannot find a “closed form” function 𝐹(𝑥) = ∫ 𝑒𝑥2
𝑑𝑥 + 𝐶. For such functions 

𝑓(𝑥), the areas have to computed using other methods, such as the Riemann sum. 

 

 

Fundamental Theorem of Calculus 

There are two parts in the Fundamental Theorem of Calculus (in the future, we just 

write “FTC” for it). 

 

(Part I) 

Let 𝑓(𝑥) be a continuous function defined on the closed interval [𝑎, 𝑏]. Then the 

following holds 

𝑑 ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

𝑑𝑥
= 𝑓(𝑥) 

for each 𝑥 ∈ (𝑎, 𝑏). 

 

(Terminology: We call this function ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 the “area-finding function”. This 

function computes the area “under” the curve 𝑦 = 𝑓(𝑡) for those 𝑡 from 𝑎 to 𝑥.) 

 

 

(Part II) 

For any solution 𝐹(𝑥) which satisfies the “differential” equation 

𝐹′(𝑥) = 𝑓(𝑥) for 𝑥 ∈ (𝑎, 𝑏), 

we can compute the area under the curve 𝑦 = 𝑓(𝑥) for 𝑎 ≤ 𝑥 ≤ 𝑏, by 

∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
  



 

 

 

 

 

 

 

 

Some ideas of the Proof of Part I and Part II 

(Part I)  

(Step 1) We prove that 𝐴(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 is differentiable for any 𝑥 ∈ (𝑎, 𝑏). 

To do this, we (as always) first consider the difference quotient, i.e. 

𝐴(𝑥 + ℎ) − 𝐴(𝑥)

ℎ
=

∫ 𝑓(𝑡)𝑑𝑡 − ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

𝑥+ℎ

𝑎

ℎ
 

But we know (from properties of Definite integrals) that: 

∫ 𝑓(𝑡)𝑑𝑡 − ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

𝑥+ℎ

𝑎

ℎ
=

∫ 𝑓(𝑡)𝑑𝑡
𝑥+ℎ

𝑥

ℎ
 

 

(Step 2) 

Next, using the Mean Value Theorem for Integrals, we obtain 

∫ 𝑓(𝑡)𝑑𝑡
𝑥+ℎ

𝑥

= 𝑓(𝜉) ⋅ ℎ 

where 𝜉 is between 𝑥 and 𝑥 + ℎ. 

 

(Step 3) 

Conclusion: Dividing through by ℎ (ℎ ≠ 0), we obtain 

∫ 𝑓(𝑡)𝑑𝑡 − ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

𝑥+ℎ

𝑎

ℎ
=

∫ 𝑓(𝑡)𝑑𝑡
𝑥+ℎ

𝑥

ℎ
=

𝑓(𝜉) ⋅ ℎ

ℎ
= 𝑓(𝜉) 

 

(Step 4) 

Finally, let ℎ → 0, and we obtain 

lim
ℎ→0

∫ 𝑓(𝑡)𝑑𝑡 − ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

𝑥+ℎ

𝑎

ℎ
= lim

ℎ→0
𝑓(𝜉) = 𝑓(𝑥) 

The last equality, i.e. = 𝑓(𝑥), is true because “as ℎ → 0, by Sandwich Theorem, 

𝜉 → ℎ.” 

 

Final Conclusion: 

Note that one can use any symbol, e.g. 𝑥, 𝑢 instead of 𝑡 here. I.e. 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑢)𝑑𝑢
𝑢=𝑏

𝑢=𝑎

=
𝑥=𝑏

𝑥=𝑎

∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑏) − 𝐹(𝑎)
𝑡=𝑏

𝑡=𝑎

 

 



We have proved  

lim
ℎ→0

𝐴(𝑥 + ℎ) − 𝐴(𝑥)

ℎ
= 𝑓(𝑥) 

I.e. 𝐴′(𝑥) = 𝑓(𝑥). 

 

(Part II) 

We want to prove “For any indefinite integral, i.e. solution 𝐹(𝑥), of the differential 

equation 𝐹′(𝑥) = 𝑓(𝑥) − − − −(∗)”, one has 

∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎

 

 

Proof: 

(Step 1) 

We need to use the following theorem, which we mentioned before: 

 

 

 

 

 

 

 

 

 

Q: How to use the Theorem in the box above? 

A: We let 𝐹1(𝑥) = 𝐴(𝑥) and 𝐹2(𝑥) = 𝐹(𝑥), where 𝐹(𝑥) is any solution of 

𝐹′(𝑥) = 𝑓(𝑥),   𝑎 < 𝑥 < 𝑏. Then by the theorem in the box, we have 

 

𝐴(𝑥) − 𝐹(𝑥) = 𝐶, 𝑎 < 𝑥 < 𝑏 

 

But then we have two cases. 

 

(Step 2) 

The case 𝑥 = 𝑎. 

In this case, 𝐴(𝑎) = 0, so we get from the above formula that 𝐴(𝑎) − 𝐹(𝑎) = 𝐶, 

which leads to the conclusion that 𝐹(𝑎) = −𝐶. 

(Step 3) 

The case 𝑥 = 𝑏. 

In this case, 𝐴(𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, so 𝐴(𝑏) − 𝐹(𝑏) = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
− 𝐹(𝑏) = 𝐶. 

Theorem 

Let 𝐹1(𝑥), 𝐹2(𝑥) be any two solutions of the differential equation (*), i.e. 

𝐹1
′(𝑥) = 𝑓(𝑥) 

and 

𝐹2
′(𝑥) = 𝑓(𝑥) 

for all 𝑥 ∈ (𝑎, 𝑏). Then 𝐹1(𝑥) − 𝐹2(𝑥) = 𝐶 for all 𝑥 ∈ (𝑎, 𝑏). 

(In short, it says “any two indefinite integrals of 𝑓(𝑥) differ only by a constant”.) 



But remembering that in Step 2, we have obtained 𝐶 = 𝐹(𝑎). Putting this into the 

formula 𝐴(𝑏) − 𝐹(𝑏) = −𝐹(𝑎), gives 𝐴(𝑏) = 𝐹(𝑏) − 𝐹(𝑎). 

 

Further F.T.C.  

One can greatly extend the FTC to compute things like the following: 

 

𝑑

𝑑𝑥
∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑡=𝑏(𝑥)

𝑡=𝑎(𝑥)

 

 

Goal: We want to show that (in the following, for simplicity, we omit write 𝑡 =

𝑎(𝑥), 𝑡 = 𝑏(𝑥)). 

𝑑

𝑑𝑥
∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

= 𝑓(𝑥, 𝑏(𝑥))𝑏′(𝑥) − 𝑓(𝑥, 𝑎(𝑥))𝑎′(𝑥) 

+ ∫
𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

 

 

Proof:  

(Main Idea): Instead of ∫ 𝑓(𝑥, 𝑡)𝑑𝑡
𝑏(𝑥)

𝑎(𝑥)
, we consider the, more general, expression 

∫ 𝑓(𝐶, 𝑡)𝑑𝑡
𝐵

𝐴
 and think of it as a “function of 3 variables 𝐴, 𝐵 and 𝐶). 

 

 

 

(Step 1) For a function of several variables, say 3 variables, we have the following 

Chain Rule (if 𝐴 = 𝑎(𝑥), 𝐵 = 𝑏(𝑥), 𝐶 = 𝑐(𝑥)): 

𝑑𝑓(𝐴,𝐵,𝐶) 

𝑑𝑥
=

𝑑𝑓(𝑎(𝑥),𝑏(𝑥),𝑐(𝑥)) 

𝑑𝑥
= 𝑓

𝐴
(𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥)) ⋅

𝑑𝑎(𝑥)

𝑑𝑥
+ 𝑓

𝐵
(𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥)) ⋅

𝑑𝑏(𝑥)

𝑑𝑥
+

𝑓
𝐶
(𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥)) ⋅

𝑑𝑐(𝑥)

𝑑𝑥
  

 

 

 

 

 

 

 

 

where 
𝜕𝑓

𝜕𝐴
= lim

ℎ→0

𝑓(𝐴+ℎ,𝐵,𝐶)−𝑓(𝐴,𝐵,𝐶)

ℎ
,

𝜕𝑓

𝜕𝐵
= lim

𝑘→0

𝑓(𝐴,𝐵+𝑘,𝐶)−𝑓(𝐴,𝐵,𝐶)

𝑘
,  

𝜕𝑓

𝜕𝐶
= lim

𝑙→0

𝑓(𝐴,𝐵,𝐶+𝑙)−𝑓(𝐴,𝐵,𝐶)

𝑙
  

(i.e. differentiating ONLY with respect to the 1st variable, respectively the 2nd or the 3rd variable. 

Shorter notation: 
𝜕𝑓

𝜕𝐴
|

(𝑎(𝑥),𝑏(𝑥),𝑐(𝑥))
= 𝑓𝐴(𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥)). Similar for 𝑓𝐵(𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥)), 

𝑓𝐶(𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥)) ) 



An Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Step 2) 

Apply the Chain Rule to the following function, 𝐹, of 3 variables: 

𝐹(𝐴, 𝐵, 𝐶) = ∫ 𝑓(𝐶, 𝑡)𝑑𝑡
𝐵

𝐴
 and get 

𝑑𝐹

𝑑𝑥
=

𝜕 ∫ 𝑓(𝐶, 𝑡)𝑑𝑡
𝐵

𝐴

𝜕𝐴
⋅

𝑑𝑎(𝑥)

𝑑𝑥
+

𝜕 ∫ 𝑓(𝐶, 𝑡)𝑑𝑡
𝐵

𝐴

𝜕𝐵
⋅

𝑑𝑏(𝑥)

𝑑𝑥
+

𝜕 ∫ 𝑓(𝐶, 𝑡)𝑑𝑡
𝐵

𝐴

𝜕𝐶
⋅

𝑑𝑐(𝑥)

𝑑𝑥
 

=
𝜕 − ∫ 𝑓(𝐶, 𝑡)𝑑𝑡

𝐴

𝐵

𝜕𝐴
⋅

𝑑𝑎(𝑥)

𝑑𝑥
+

𝜕 ∫ 𝑓(𝐶, 𝑡)𝑑𝑡
𝐵

𝐴

𝜕𝐵
⋅

𝑑𝑏(𝑥)

𝑑𝑥
+

𝜕 ∫ 𝑓(𝐶, 𝑡)𝑑𝑡
𝐵

𝐴

𝜕𝐶
⋅

𝑑𝑐(𝑥)

𝑑𝑥
 

= −𝑓(𝐶, 𝐴) ⋅
𝑑𝑎(𝑥)

𝑑𝑥
+ 𝑓(𝐶, 𝐵) ⋅

𝑑𝑏(𝑥)

𝑑𝑥
+ ∫

𝜕𝑓(𝐶, 𝑡)

𝜕𝐶
𝑑𝑡

𝐵

𝐴

⋅
𝑑𝑐(𝑥)

𝑑𝑥
 

= 𝑓(𝐶, 𝐵) ⋅
𝑑𝑏(𝑥)

𝑑𝑥
− 𝑓(𝐶, 𝐴) ⋅

𝑑𝑎(𝑥)

𝑑𝑥
+ ∫

𝜕𝑓(𝐶, 𝑡)

𝜕𝐶
𝑑𝑡

𝐵

𝐴

⋅
𝑑𝑥

𝑑𝑥
 

 

Because 𝐴 = 𝑎(𝑥), 𝐵 = 𝑏(𝑥), 𝑐(𝑥) = 𝑥,  finally, we obtain  

𝑑 ∫ 𝑓(𝑥, 𝑡)𝑑𝑡
𝑏(𝑥)

𝑎(𝑥)

𝑑𝑥
= 𝑓(𝑥, 𝑏(𝑥)) ⋅

𝑑𝑏(𝑥)

𝑑𝑥
− 𝑓(𝑥, 𝑎(𝑥)) ⋅

𝑑𝑎(𝑥)

𝑑𝑥
+ ∫

𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

 

If 𝑓 is a function of 3 variables, 𝐴, 𝐵, 𝐶 and each of these variables depends on 𝑥. Then 𝑓 

is a function of 𝑥. The Chain Rule then says  

𝜕𝑓

𝜕𝑥
= 𝑓𝐴 ⋅

𝑑𝐴

𝑑𝑥
+ 𝑓𝐵 ⋅

𝑑𝐵

𝑑𝑥
+ 𝑓𝐶 ⋅

𝑑𝐶

𝑑𝑥
 

 

Example:  

𝑓(𝐴, 𝐵, 𝐶) = 𝐴 + 𝐵2 + 𝐵𝐶 

Suppose 𝐴 = cos 𝑥 , 𝐵 = sin 𝑥 , 𝐶 = 𝑥 Then  

𝑑𝑓

𝑑𝑥
=

𝜕𝑓

𝜕𝐴
⋅

𝑑 cos 𝑥

𝑑𝑥
+

𝜕𝑓

𝜕𝐵
⋅

𝑑 sin 𝑥

𝑑𝑥
+

𝜕𝑓

𝜕𝐶
⋅

𝑑𝑥

𝑑𝑥
 

But now 
𝜕𝑓

𝜕𝐴
= 1,  (because now B,C are constants) 

𝜕𝑓

𝜕𝐵
= 2𝐵 + 𝐶,

𝜕𝑓

𝜕𝐶
= 𝐵  

 

Putting these back into the formula 
𝑑𝑓

𝑑𝑥
=

𝜕𝑓

𝜕𝐴
⋅

𝑑 cos 𝑥

𝑑𝑥
+

𝜕𝑓

𝜕𝐵
⋅

𝑑 sin 𝑥

𝑑𝑥
+

𝜕𝑓

𝜕𝐶
⋅

𝑑𝑥

𝑑𝑥
 

we get 
𝑑𝑓

𝑑𝑥
= − sin 𝑥 + (2𝐵 + 𝐶) cos 𝑥 + 𝐵 = − sin 𝑥 + (2sin 𝑥 + 𝑥) cos 𝑥 + sin 𝑥 

We can check that the computation is correct by the following direct computation: 

𝑓 = cos 𝑥 + sin2 𝑥 + (sin 𝑥)𝑥 

𝑑𝑓

𝑑𝑥
= − sin 𝑥 + 2 sin 𝑥 cos 𝑥 + (cos 𝑥)𝑥 + sin 𝑥 

 

 

 

 

Aaaaa 

 

 


