
 

Renard The distance formula

Postulates 2 3 ofEuclidean
geometry also hoed in hyperbolic

geometry

Postulate 2 A lone can be produced indefinitely

in either direction
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hyperbolic straight line segment

can be produced indefinitely

ie longer than any prescribed
length



Postulate3 A circle can be described with

any center and radius

PI Use a transformation we only need to

consider
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hyperbolic distance from a point reio

to the center 0 is a constant
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Hence R do reio but

is the hyperbolic radius of the hyperbolic circle

Andforany R 0 we can solve R butter



to find r Effi
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Then the Eudidean circle centered at 0

with Euclidean radius r GIFT is the

required hyperbolic circle centered as
0

with hyperbolic Kadius R

Conclusion The hyperbolic geometry is a

non Euclidean geometry at
the strict

sense

Postulate4isautomatically satisfied as all
transformations

in the hyperbolic geometry
are conformal Euclidean

anglemeasurement is
invariant and hence provides

the

required angle in hyperbolic
geometry



Formula of Lobatchersky

Tim let the point p begivenby
the hyperbolic

distance d from a hyperbolic straight

line let 0 be the angle of parallelism
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After a transformation wemay assure p
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the perpendicular from p to the hyperbolic

straight line is the x axis



Then the point r as in the figure is given
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The Upper Half Plane Model

Ref The Upperhalfplane is
thesubset
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let Itt be the group of transformations of

It of the fam
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air TU AT models hyperbolic geometry

Remade Both B IH and CTUHT are models

of the same abstract geometry
namely the

hyperbolic geometry
see xD inthe proofbelow

Distance in the upperhalf plane
model
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i f is an isomorphism of the desk and upper

halfplane models

Now let 8 Ect Xetteigct aetsb

be a smooth curve in the upper halfplane
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Remake Hyperbolic straight lines in the

upper half plane
model are



Chlo Area hyperbolic

Recall In Euclidean geometry

ArealR 2 oxoy f dxdy

Similarly in hyperbolic geometry upperhalf

plane model Xt.icytoy extoxstigtoy
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Hence we make

Def the hyperbolic are of
a region R

in the hyperbolic upper half plane
model

is given by
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Areas ofTriangles

c Doubly asymptotic triangles

ie triangles with
2 ideal vertexes

disk model applehalf plane model



is
we onlyneed to consider the

11 y
case that the

idealpouitsn.iqat a and 1 and the

finite vertex somewhere
7 and

along the unit circleI o s

Ex Hints horizontal
translations

and scaling are
transfamatis

of HTS

Ltd interior angle ofthe triangle at the

finite vertex Then Euclidean geometry

the finite vertex has coordinates
Asd sina

Hence the area of the triangle
is
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Trebly asymptotic triangle
ideal triangle

ie all 3 vertexes are ideal points

By us wehave fA

for anytrebly asymptotictriangle

3 General triangle

Wemay put the triangle in a way
such



that one ofthe edge is long they axis
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as in the figure I are doubly asymptotic

triangles

Then by
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interior disjoint union

is a trebly asymptotic triangle

we have by e
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ie The area of a triangle equals to 1T
mains

the sum of interior angles which is called

angular defect

TIM Theareas of a triangle in hyperbolic

geometry equals its angulardefect

Thus The sum of the interior angles of a

triangles in hyperbolic geometry is

less than IT radiansi


