

Note: $\frac{1}{|S(a,b,c)|} = \left| \frac{a+ib}{1-c} \right| = \frac{\sqrt{a^2+b^2}}{1-c}$ but $(a,b,c) \in S^2$ $a^{2}+b+c^{2}=1$ \Rightarrow $\alpha^{2}+b^{2}=1-C^{2}$ $\sqrt{a^2 + h^2} = \sqrt{1 - C^2}$ $|S(a,b,c)|=\frac{\sqrt{a^{2}+b^{2}}}{1-c}=\frac{\sqrt{(1+C)(1-C)}}{1-C}=\sqrt{\frac{1+C}{1-C}}$ which implies $(a,b,c) \Rightarrow (0,0,1)$ if and only if $|S(a,b,c)| \rightarrow +\infty$.

29. Inversion
$$
z \mapsto \frac{1}{z}
$$
 can be considered as
\n
$$
tau_{\text{max}} \cdot \text{max}
$$
\n
$$
\begin{array}{c}\n\begin{array}{c}\n2 \Rightarrow \frac{1}{z} > \forall z \in \mathbb{C} \setminus \{0\} \\
0 \mapsto \infty \\
\infty \implies 0\n\end{array}\n\end{array}
$$
\n24.14

\n25.15

\n26.16

\n27.17

\n28.18

\n29.19

\n20.19

\n20.19

\n21.10

\n22.10

\n23.10

\n24.11

\n25.10

\n26.11

\n27.10

\n28.11

\n29.10

\n20.10

\n20.10

\n21.11

\n22.10

\n23.10

\n24.11

\n25.11

\n26.11

\n27.10

\n28.11

\n29.11

\n20.10

\n20.11

\n21.11

\n22.10

\n23.10

\n24.11

\n25.10

\n26.11

\n27.11

\n28.11

\n29.11

\n20.11

\n20.11

\n21.11

\n22.11

\n23.11

\n24.11

\n25.11

\n26.11

\n27.11

\n28.11

\n29.11

\n20.11

\n20.11

\n21.11

\n22.11

\n23.11

\n24.11

\n25.11

\n

$$
S = S_{U} \longrightarrow \hat{U}
$$
\n
$$
\{a,b,c\} \in S^{2} \setminus \{N\} \mapsto S(a,b,c) \in \hat{U}
$$
\n
$$
\{a,b,c\} \in S^{2} \setminus \{N\} \mapsto S(a,b,c) \in \hat{U}
$$
\n
$$
\overline{\{N: (0,0,1) \} \} \implies \infty \in \hat{C}
$$
\n
$$
\overline{\{N: (0,0,1) \} \} \mapsto \infty \in \hat{C}
$$
\nEXAMPLE: (2) In the Definition can be presented as the following figure (commutative diagram)

Note S may notexist since it is assumed to be surjective containmen, not necessary unjective. e g: $\mathbb{C} \Rightarrow \mathbb{C} \atop \frac{\omega}{7} \mapsto \frac{\omega}{7}$ is a covering transformation which is not invertible. covering transformation may not be a (geometric) Transformants

$$
eq: Inversion T: CYoy \to CYoy
$$
\n
$$
\frac{w}{z} \mapsto w = \frac{1}{z}
$$
\n
$$
\therefore Steagonphic projection S = S^{2}ylnsy \to CYoy
$$
\n
$$
\therefore a corresponding transformation. (S=(0,0,1)
$$
\n
$$
\frac{1}{z} \text{ when } T \text{ light so a rotation of } 180^{\circ} \text{ on the } S^{2} \text{ about the } X-\text{axis} \text{ via the } Speroopaplic}
$$
\n
$$
projection S.
$$

$$
\begin{cases}\nS\setminus\{N,s\} & \Rightarrow \hat{S}\setminus\{N,s\} \\
N = (0,0,1) \mapsto S = (0,0,1) \\
S = (0,0,-1) \mapsto N = (0,0,1)\n\end{cases}
$$

Let
$$
z = \frac{a+ib}{1-c}
$$
 be the image of the point
(a,b,c) $\in S^2 \setminus \{N, S\}$ under the Storregraphic
projection.

$$
TZ = \frac{1}{Z} = \frac{1}{\frac{Q + ib}{1 - C}} = \frac{1 - C}{Q + ib}
$$

$$
= \frac{(-C)(a-i b)}{a^{2}+b^{2}}
$$

$$
=\frac{(1-C)(a-cb)}{1-c^{2}} = \frac{a-cb}{1+C}
$$

$$
= \frac{Q + \lambda (-b)}{1 - (-C)} = S(Q, b)^{-C}
$$

$$
i \in \mathcal{T}(\mathcal{S}(a,b,c)) = \mathcal{S}(a,-b,-c)
$$

Let $g = \text{rotation of } (80^\circ \text{ with respect to the X-avg)}$ Hen $g(a,b,c) = (a,-b,-c)$. \int $C(\epsilon \epsilon)$

Hence

\n
$$
T(S(a,b,c)) = S(g(a,b,c))
$$
\n
$$
S(g(a,b,c)) = S(g(a,b,c))
$$

In history ² figures are congruent when one can be moved so as to coincide with the other move \longleftrightarrow transformation Klein's idea: "Congruence determines geomery \bigcup need transformation to define Classical congruence relation of Euclidean geometry $satisfy : (\alpha)$ (reflexivity) $A \cong A$ for any figure A (b) (symmetry) If $A \cong B$, then $B \cong A$ (c) (transitivity) If $A \cong B \in B \cong C$, $\left(\begin{array}{c} u \equiv ' \end{array}$ congruent) then $A \cong C$.

Remark: A relation with properties $\left(\alpha\right)$ (b) $R(G)$ is called an equivalence relation Defuition of Geometry (in the sense of Klein) The properties of the classical congruence relation can be expressed in terms of properties of congruence transformations: Set of transformations $\{\xi\}$ such that $A \cong B \Leftrightarrow A = f(B) = \{f(b): b \in B\}$ for some f Then (a) $f(z)=z$ (identity transformation) is a congruence transformation b) If $f(z)$ is a congruence transformation then f is invertible and $f^{-1}(z)$ is also a congruence transformation $E(S)$ If $f(z)$ and $g(z)$ are congruence vanisformations then so is the composition $(f \circ g)(z) = f(g(z))$

Def	let	Set	Integrand																							
(a) G <math< td=""></math<>																										

- . The set S is the underlying space of the geometry
- . The set G is the <u>transformation</u> group of the geometry

24: A figure is any subset A of the underlying
\n space S of the geometry
$$
(S, G)
$$
.

\n2 figures A B are amgruent 2f there
\n in a transformation $T \in G$ such that
\n $T(A) = B$, where $T(A) = \{Te : z \in A\}$

\n2g (1) Fudidean Geometry (unifhaut reflections)

\n(1) Fudidean Geometry (unifhaut reflections)

\nUnderlying space S = complex plane C ($\notin \infty$)

\nTransfenuation group G1

\n= set E of transformations of the form
\n $Tz = e^{i\theta}z + b$ (O EIR, b E C)

\n2f we want to include transformations, then we also need to include transformations of the four e^{i\theta}z + b.

\n*T' is called a rigid motion

\n= computation of rotation a translation.

The pair
$$
(\mathbb{C}, \mathbb{E})
$$
 models. Eudiduan geometry
\n(without reflections)
\n
$$
\frac{Clock}{(a)} \pm \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \left(\frac{m}{b} \theta = 0 \le b = 0 \right)
$$
\n
$$
\frac{1}{\sqrt{a}} \pm \mathbb{E} \mathbb{E} \mathbb{E} \left(\frac{m}{b} \theta = 0 \le b = 0 \right)
$$
\n
$$
\frac{1}{\sqrt{a}} \pm \mathbb{E} \mathbb{E} \left(\frac{1}{\sqrt{a}} \right) \pm \mathbb{E} \mathbb{E} \mathbb{E} \left(\frac{1}{\sqrt{a}} \right) \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \left(\frac{1}{\sqrt{a}} \right) \mathbb{E} \mathbb{
$$

eg(2) Translationed Geometry
Underlying space = C
Trausfunction group $T=772=7\text{th}\cdot\text{keC}$
Then (C,T) is a geometry $(Ex\cdot \text{check})$
Note: in translational geometry
Note: in trivial Geometry
eg(3) The Trivial Geometry
$(S, \{Id_S\})$ is. G consists of identity element any.
Notes: 2"differential.
How Id_{S}
It is geometry.

Invariant

Def: Let
$$
(S, G)
$$
 be a geometry.

\nLet D be a set of figures from (S, G)

\n(i.e. elements of D are subsets of S)

\n\n- The set D is invariant (in the geometry (S, G))
\n- The set D is invariant (in the geometry (S, G))
\n- A function f defined an D is called invariant (in the geometry (S, G))
\n- The group (S, G))
\n- $f(T(B)) = f(B)$, $\forall B \in D$ a $T \in G$.
\n

QgS:
(I) Triangles
$D = \{triangle$
Geometry.
(2) Area, Perimeter of triangular functions
2) Area, Perimeter of $S = Area: D \Rightarrow R$
2) wave invariant geometry: $S = P$ equivalence: $D \Rightarrow R$

 (3) D = { triangles in C } $d =$ sum of distance of vertexes to the aigin d is not invariant in the Euclidean geometry $d(\Delta) + d$ (translation of Δ) $\overbrace{r}^{\text{no}}$ transalation of Δ Erlanger Program (Klein) The subject matter of a geometry is its invariant sets and the invariant functions on those sets. eg: We study triangles and its area, perimeter, etc

in the Euclidean geometry.

Geometric Proof

\nLet
$$
(\beta, G) = \alpha
$$
 Geometry

\nIf $(i) \in \mathbb{Z}$ a figure in β such that
\nstatement "W" is true.

\n(i) all measurements and other quantities
\nneutral in the statement "W" are
\ninvariant.

\nThen $\forall T \in G$, "W" is about the fact that "W" are
\n $\alpha T \in G$ pure "W" is about the \mathbb{F} at $T(\mathbb{F})$.

\nApply α in \mathbb{F} to $T(\mathbb{F})$.

\nprove $\alpha T(\mathbb{F})$.