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1. Show that

(a) ∫ ∞
1

e−tts−1dt

defines an entire function.
(b) ∀ε > 0,∃C > 0 such that

|s| log |s| ≤ C|s|1+ε

∀s ∈ C\{0}.

Proof. (a) The function

FN (s) =

∫ N

1

e−tts−1dt

is entire for any N > 1. It suffices to show that FN converges uni-
formly on compact subsets. But for |s| < R, we have

|
∫ ∞
1

e−tts−1dt− FN (s)| ≤
∫ ∞
N

e−ttR ≤ C
∫ ∞
N

e−t/2 = 2Ce−N/2.

(b) It is the same as to show that

r ≤ Ceεr

for all r. It suffices to assume r > 0. The right hand side is greater
than C(εr), so just take C = 1

ε .

2. (a) Prove that
d2 log Γ(s)

ds2
=

∞∑
n=0

1

(n+ s)2

for positive s. Show that if the left-hand side is interpreted as (Γ′/Γ)′,
then the above formula holds for s 6= 0,−1,−2, . . . .

(b) Using part a), show that

Γ(s)Γ(s+
1

2
) =
√
π21−2sΓ(2s)
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Proof. (a) We will use the formula:

Γ(z) =
e−γz

z

∞∏
n=1

(1 +
z

n
)e

z
n .

Taking the second derivative of log Γ(z), we have

d

dz

(
Γ′(z)

Γ(z)

)
=

∞∑
n=0

1

(z + n)2
.

(b) Now, we compute

d

dz

(
Γ′(z)

Γ(z)

)
+

d

dz

(
Γ′(z + 1

2 )

Γ(z) + 1
2

)
=

∞∑
n=0

1

(z + n)2
+

∞∑
n=0

1

(z + n+ 1
2 )2

= 4

[ ∞∑
n=0

1

(2z + 2n)2
+

∞∑
n=0

1

(2z + 2n+ 1)2

]

=

∞∑
n=0

4

(2z + n)2

= 4
d

dw

(
Γ′(w)

Γ(w)

)∣∣∣∣∣
w=2z

= 2
d

dz

(
Γ′(2z)

Γ(2z)

)
.

Integration back, we have

Γ(z)Γ(z +
1

2
) = eaz+bΓ(2z),

for some constant a, b. Substituing z = 1
2 , and making use Γ( 1

2 ) =√
π,Γ(1) = 1,Γ( 3

2 ) = 1
2Γ( 1

2 ) = 1
2

√
π,Γ(2) = 1. We have

√
π = e

1
2a+b

1

2

√
π = ea+b.

So we obtain

ea =
1

4

eb = 2
√
π

whence the result.

3. Let f(z) = eaze−e
z

, a > 0. Observe that in the strip {x+ iy : |y| < π/2}
the function f(x+ iy) is exponentially decreasing as |x| tends to infinity.
Prove that

f̂(ξ) = Γ(a− 2πiξ).

2



Proof. Using the substitution t = ex,

f̂(ξ) =

∫ ∞
−∞

eaxe−e
x

e−2πixξdx

=

∫ ∞
−∞

e(a−2πiξ)xe−e
x

e−2πixξdx

=

∫ ∞
0

t(a−2πiξ)−1e−tdt

= Γ(a− 2πiξ).

4. (a) Show that 1/|Γ(s)| is not O(ec|s|) for any c > 0. [Hint: If s =
−k − 1/2, where k is a positive integer, then |1/Γ(s)| ≥ k!/π.]

(b) Show that there is no entire function F (s) with F (s) = O(ec|s|)
that has simple zeros at s = 0,−1,−2, . . . ,−n, . . . , and that vanishes
nowhere else.

Proof. (a) Γ( 1
2 ) =

√
π, and hence

Γ(−k − 1

2
) =

√
π

(− 1
2 )(−1− 1

2 ) · · · (−k − 1
2 )

So, ∣∣∣∣∣ 1

Γ(−k − 1
2 )

∣∣∣∣∣ ≥ k!

2
√
π
.

The result follows from the well-known fact that

lim
n→∞

an

n!
= 0

for any a > 0. This fact can be proved by calculating the ratios:
an+1/(n+1)!

an/n! = a
n+1 <

1
2 for all large enough n.

(a) For if such an F exists, then by the Hadamard factorization

F (s) = eAz+Bz

∞∏
n=1

(
1 +

z

n

)
e−

z
n

In other words, we have

1

Γ(z)
= F (z)eA

′z+B ,

this contradicts to (a), because the right hand side has growth order
1.
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5. Prove that for Re(s) > 1,

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx.

[Hint: Write 1/(ex − 1) =
∑∞
n=1 e

−nx.]

Proof. ∫ ∞
0

xs−1

ex − 1
dx =

∞∑
n=1

∫ ∞
0

xs−1e−nxdx

=

∞∑
n=1

1

ns

∫ ∞
0

ys−1e−ydy

=

∞∑
n=1

1

ns
Γ(s).

Whence the result.
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