MATH1010-i Week 5 – 7

(part 2)

Topics

- RT, LMVT, CMVT, TT
- Applications of Mean Value Theorems
- Taylor's Theorem $n = 1$ version
- Taylor's Theorem $n = 2$ version
- How to do the general case
- Applications of TT

Mean Value Theorems for Derivatives

There are many such theorems, they have all one common theme, i.e. they are about a formula relating the "mean value of a function" to its "derivative" at some unknown point.

Observation:

 Hypotenuse of the red right-angled triangle is "parallel" to the blue tangent line at $x = \xi$. (note that we are assuming $a < b$).

$$
f'(\xi) = \frac{f(b) - f(a)}{b - a} \exists \xi \in (a, b)
$$

Theorem

Assumptions:

- 1. f is differentiable in (a, b) .
- 2. f is continuous on [a, b]. (Technical assumption to get an absolute extremum (最大,最小) point)

Conclusion: $\exists \xi \in (a, b)$:

$$
f'(\xi) = \frac{f(b) - f(a)}{b - a}.
$$

A generalization of LMVT is:

Theorem (Cauchy)

Assumptions

- 1. f , g are both differentiable in (a, b)
- 2. f, g are both continuous on [a, b].
- 3. $g'(x) \neq 0 \forall x \in (a, b)$. (this condition makes sure that the denominators are non-zero!)

Conclusion: $\exists \xi \in (a, b)$:

$$
\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}
$$

Remark: (LMVT as a special case of CMVT) This is because if we let $g(x) = x$ in CMVT, then $g'(x) = x, \forall x$ inside the domain. Therefore, the equation

$$
\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}
$$

takes the form $\frac{f'(\xi)}{1}$ $\frac{f(b)-f(a)}{1} = \frac{f(b)-f(a)}{b-a}$ $\frac{f_0 - f(a)}{b - a}$, since $g(b) = b$, $g(a) = a$ in this case.

As a consequence, we get back LMVT.

Relation between Taylor's Theorem when $n = 1$ **and LMVT**

If in LMVT, we let $b = x$, and $a = c$, then we obtain the following

$$
f'(\xi) = \frac{f(x) - f(c)}{x - c}
$$

After multiplying both sides by $x - c$, we get

$$
f(x) = f'(\xi)(x - c) + f(c)
$$

= f(c) + f'(\xi)(x - c).

Which is just Taylor's Theorem in the case for the case $n = 1$.

The term $f'(\xi)(x - c)$ is called ther "error term". The reason for this name is due to

$$
f'(\xi)(x-c) = \underbrace{f(x)}_{\text{correct value of } f \text{ at the point } x} - \underbrace{f(c)}_{\text{approximate value of } f}
$$

Error term is the difference between the correct value at x and its approximate value at x . (now the "approximate value" is a constant number).

Remark:

The error term depends on $(x - c)^1$, i.e. it is of "degree 1". As $x - c$ increases, the error may increase (of course it also depends on $f'(\xi)$, where ξ depends on x)

Taylor's Theorem for $n = 2$.

We start with asking ourselves the

Question: Can we improve this (i.e make the error smaller, make the approximation on the right-hand side more accurate?)

Answer: Yes. We can try next $f(x) = f(c) + f'(c)(x - c) +$ Error term if we stop at the $(x - c)^1$ (i.e. "1st power of x" term), Where this time, the "Error" term is of the form

$$
A(x-c)^2
$$

I.e.

$$
f(x) - f(c) - f'(c)(x - c) = A(x - c)^2
$$

Goal: Find a formula for the number "*A*".

To see this: Rewrite the above equation as

$$
\frac{f(x) - f(c) - f'(c)(x - c)}{(x - c)^2} = K
$$

Goal: "Show that $K = \frac{f''(\eta)}{2!}$ $\frac{(4)}{2!}$."

Answer: We think of the left-hand side as a quotient of two functions like what have in "CMVT", More precisely, let $A(x) = f(x) - f(c) - f'(c)(x - c)$,

$$
B(x) = (x - c)^2
$$

Note that actually the first line above is just $A(x) - A(c)$, the second line is $B(x)$ – $B(c)$.

So we have $\frac{A(x)-A(c)}{(x)-B(c)} = \frac{A'(\eta)}{B'(\eta)}$ $\frac{A(t)}{B'(t)}$ by using CMVT.

Since
$$
A'(\eta) = \frac{dA(x)}{dx}\Big|_{x=\eta} = \frac{d\{f(x) - f(c) - f'(c)(x - c)\}}{dx}\Big|_{x=\eta} = f'(\eta) - f'(c) \cdot 1
$$

and $B'(\eta) = \frac{dB(x)}{dx}\Big|_{x=\eta} = \frac{d(x-c)^2}{dx}\Big|_{x=\eta} = 2(\eta - c)$

This means ()−()− ′()(−) (−)² ⁼ ′()− ′() 2(−) …………….. (1)

Now the right-hand side of the above equation is $\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right) \cdot \frac{f'(\eta)-f'(c)}{(\eta-c)}$ $\frac{f(t)-f(t)}{(n-c)}$ and the yellow colored part can be calculated using LMVT to get

$$
\frac{f'(\eta) - f'(c)}{(\eta - c)} = f''(\beta)
$$

for some number β between η and c .

Now putting this back to the right-hand side of (1), we obtain

$$
\frac{f(x) - f(c) - f'(c)(x - c)}{(x - c)^2} = \frac{f'(\eta) - f'(c)}{2(\eta - c)} = \left(\frac{1}{2}\right) f''(\beta)
$$

which means $\frac{f(x)-f(c)-f'(c)(x-c)}{(x-c)^2} = \left(\frac{1}{2}\right)$ $\frac{1}{2}$ $f''(\beta)$ i.e.

$$
f(x) - f(c) - f'(c)(x - c) = \left(\frac{1}{2!}\right) f''(\beta)
$$

or

$$
f(x) = f(c) + f'(c)(x - c) + \left(\frac{1}{2!}\right) f''(\beta)
$$

which is T.T. for $n = 2$.

Summary

We have proved T.T. for the cases $n = 1$ and $n = 2$. Using similar idea, one can prove T.T. for $n = 3,4, \cdots$ What one needs to do is to (i) apply CMVT many times and (ii) apply LMVT once.

In short, Taylor Theorem is nothing but one of the mean value theorems.

$1st$ application of the $n = 2$ Taylor's Theorem – eqn. of tg. line at $x = c$.

As we know, the $n = 2$ T.T. says

$$
f(x) = f(c) + f'(c)(x - c) + \left(\frac{1}{2!}\right) f''(\beta)(x - c)^2
$$

where $\left(\frac{1}{2}\right)$ $\frac{1}{2!}$ $\int f''(\beta)(x-c)^2$ is the error term.

Question: What is the meaning of the term $f(c) + f'(c)(x - c)$ on the right-hand side?

Answer: If we put a "subject" y and write $y = f(c) + f'(c)(x - c)$, this is just the equation of the tangent line to the curve $y = f(x)$ at the point $x = c$.

Example

Find the equation of the tangent line to $y = e^x$ at $x = 1$. Answer: $y = e^1 + e^1(x - 1) = e + e(x - 1)$.

Comment:

We sometimes say $y = f(c) + f'(c)(x - c)$ is the first order (\exists) approximation of the function f near the point c .

Another Application of the Mean Value Theorems – L'Hôpital Rule (in the future, we'll just write L'H Rule).

We just prove the simplest case of L'H Rule, i.e. the case where we assume:

 f, g are two differentiable functions in the domain (a, b) , f, g are both continuous functions on the domain [a, b]. For some point $c \in (a, b)$, it holds that $f(c) = g(c) = 0$. We have limit of the form $\lim_{x \to c} \frac{f(x)}{g(x)}$ $\frac{f(x)}{g(x)}$ is of the form $\frac{0}{0}$.

Then we can conclude that $\lim_{x \to c} \frac{f(x)}{g(x)}$ $\frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$ $\frac{f'(x)}{g'(x)}$, provided the limit of $\frac{f'(x)}{g'(x)}$ $\frac{f(x)}{g'(x)}$ exists.

Proof idea (as application of CMVT)

The proof is based on the following:

- Interpret $\frac{f(x)}{g(x)}$ as $\frac{f(x)-f(c)}{g(x)-g(c)}$ $\frac{f(x)-f(c)}{g(x)-g(c)}$.
- Apply CMVT to this and get $\frac{f(x)-f(c)}{g(x)-g(c)} = \frac{f'(\xi)}{g'(\xi)}$ $\frac{f'(s)}{g'(\xi)}$ for some ξ between x and c (two cases here: (i) $x < c$ and (ii) $x > c$. In both cases ξ is sandwiched by x and c, so as $x \to c$, it follows that $\xi \to c$. One can also write this in the form $\lim_{x \to c} \xi = c$.
- **(Taking limit** $x \to c$ **)** We take this limit for the equation $\frac{f(x)-f(c)}{g(x)-g(c)} = \frac{f'(\xi)}{g'(\xi)}$ $g'(\xi)$ and get $\lim_{x \to c} \frac{f(x)-f(c)}{g(x)-g(c)}$ $\lim_{g(x)-g(c)} = \lim_{\xi \to c}$ $f'(\xi)$ $\frac{f'(\xi)}{g'(\xi)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$ $g'(x)$
- The last step (i.e. the yellow-colored one) is obtained by changing the name ξ back to x .

An Example of L'H Rule

Find the limit $\lim_{x\to 0^+} x^x$ (though we have not proved it, the L'H Rule holds also for one-sided limits).

Answer: Write $x^x = e^{x \ln x}$

Then all we need to do is to compute the limit $\lim_{x\to 0^+} x \ln x$.

This one can be computed by considering $\frac{\ln x}{1/x}$, which when $x \to 0^+$ is a limit of ∞/∞ form (L'H Rule also holds in this case, though we also haven't proved it).

Using L'H Rule, we now get $\lim_{x\to 0^+} \frac{\ln x}{1/x}$ $\frac{\sin x}{1/x} = \lim_{x \to 0^+}$ $d \ln x$ $\frac{dx}{dx^{-1}}$ $\frac{\frac{\ln x}{dx}}{\frac{x^{-1}}{dx}} = \lim_{x \to 0^+} \frac{x^{-1}}{-x^{-2}} = 0^-$ Using this, we get $\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^{x \to 0^+} e^{x \ln x} = 1^-$. **Exercise for you.** Find $\lim_{x\to 0^+} x^{\sin x}$