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Week 5-7 

(part 1) 

 

Covered: 

 Four rules of derivatives (i.e. +, −,×,÷) 

 Mentioned Chain Rule (i.e. derivative of composite function of two functions) 

 

 

Four rules of derivatives 

Assumption: In the following let 𝑓(𝑥), 𝑔(𝑥) be two functions, both having the same 

domain, and both differentiable at the point 𝑥 = 𝑐 in the domain. Then we have 

(*) 𝑓(𝑥) ± 𝑔(𝑥), 𝑓(𝑥)𝑔(𝑥), 𝑓(𝑥)/𝑔(𝑥) are all differentiable at 𝑥 = 𝑐.  (For the 

last one, one has to make the extra assumption that 𝑔(𝑐) ≠ 0.) 

Furthermore, the derivatives of these “sum”, “difference”, “product” and “quotient” 

functions at the point 𝑥 = 𝑐 are given by formulas listed below: 

 

1. The derivative of the sum function 𝑓(𝑥) + 𝑔(𝑥) at 𝑥 = 𝑐 (If you like, you can 

give a name to this function, calling it for example (𝑓 + 𝑔)(𝑥) or ℎ(𝑥) ) has the 

following formula. 

𝑑(𝑓(𝑥) + 𝑔(𝑥))

𝑑𝑥
|

𝑥=𝑐

= 𝑓′(𝑐) + 𝑔′(𝑐) 

2. Similarly, for the function 𝑓(𝑥) − 𝑔(𝑥), we have 

𝑑(𝑓(𝑥) − 𝑔(𝑥))

𝑑𝑥
|

𝑥=𝑐

= 𝑓′(𝑐) − 𝑔′(𝑐) 

3. (Product Rule) For product of these two functions, the formula is slightly 

different, i.e.  

𝑑(𝑓(𝑥)𝑔(𝑥))

𝑑𝑥
|

𝑥=𝑐

= 𝑔(𝑐)𝑓′(𝑐) + 𝑔′(𝑐)𝑓(𝑐) 

Remark: In the case when 𝑔(𝑥) ≡ 𝑘 (i.e. it is constantly equal to 𝑘), the above 

formula has the simpler form  

𝑑(𝑘𝑓(𝑥))

𝑑𝑥
|

𝑥=𝑐
= 𝑘𝑓′(𝑐) 

4. (Quotient Rule) For quotient, it is 

𝑑(𝑓(𝑥)𝑔(𝑥))

𝑑𝑥
|

𝑥=𝑐

=
𝑓′(𝑐)𝑔(𝑐) − 𝑔′(𝑐)𝑓(𝑐)

(𝑔(𝑐))
2  

 



Idea of Proof of the Product Rule 

We just outline one or two of the ideas. If you are interested in more detail, just send 

me an e-mail. I will explain more to you. 

 

A Preparatory Result 

To show the product rule, we need the following “little” result (called “lemma”): 

Lemma (Differentiable at 𝑥 = 𝑐 ⇒ continuous at 𝑥 = 𝑐.) 

Assume 𝑓(𝑥) is differentiable at 𝑥 = 𝑐, then 𝑓(𝑥) is continuous at 𝑥 = 𝑐. 

 

Proof: 

Main idea is to start from the statement lim
ℎ→0

𝑓(𝑐 + ℎ) = 𝑓(𝑐)  (definition of 

“continuous at 𝑥 = 𝑐.”) and try to connect it to the limit lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
= 𝑓′(𝑐) 

(definition of “differentiable at 𝑥 = 𝑐.”). 

 

The connection can be established if one looks at the expressions: 

 

(i) 𝑓(𝑐 + ℎ) − 𝑓(𝑐) and  

(ii) 
𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 

This is because 𝑓(𝑐 + ℎ) − 𝑓(𝑐) =
(𝑓(𝑐+ℎ)−𝑓(𝑐))

ℎ
⋅ ℎ 

 

Now we know that in the above equation, the limit lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 and the limit 

lim
ℎ→0

ℎ exist. 

Furthermore, the first of them is equal to 𝑓′(𝑐), which is a finite number. The second 

one is equal to zero. 

Combining all these, we get for the right-hand side: 

lim
ℎ→0

(𝑓(𝑐 + ℎ) − 𝑓(𝑐))

ℎ
⋅ lim

ℎ→0
ℎ = 𝑓′(𝑐) ⋅ 0 = 0 

It follows that the limit of the left-hand side also exists and is given by 

lim
ℎ→0

(𝑓(𝑐 + ℎ) − 𝑓(𝑐)) = lim
ℎ→0

(
(𝑓(𝑐 + ℎ) − 𝑓(𝑐))

ℎ
ℎ) = lim

ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
⋅ lim

ℎ→0
ℎ

= 0 



Conclusion: We have proved lim
ℎ→0

(𝑓(𝑐 + ℎ) − 𝑓(𝑐)) = 0 or equivalently 

lim
ℎ→0

𝑓(𝑐 + ℎ) = 𝑓(𝑐) 

Steps of the Proof of Product Rule 

1. Consider the “Difference Quotient” i.e. 

𝑓(𝑐 + ℎ)𝑔(𝑐 + ℎ) − 𝑓(𝑐)𝑔(𝑐)

ℎ
 

2. Rewrite it in the form (because we only know the following limits to exist: (i) 

lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 , (ii) lim

ℎ→0

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
 ): 

 

𝑓(𝑐 + ℎ)𝑔(𝑐 + ℎ) − 𝑓(𝑐 + ℎ)𝑔(𝑐) + 𝑓(𝑐 + ℎ)𝑔(𝑐) − 𝑓(𝑐)𝑔(𝑐)

ℎ
 

Grouping terms we get from the above: 

𝑓(𝑐 + ℎ)[𝑔(𝑐 + ℎ) − 𝑔(𝑐)]

ℎ
+ 𝑔(𝑐) 

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

3. Take limit ℎ → 0. The term 
𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
 goes to the limit 𝑔′(𝑐).  On the other 

hand, the term 
𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 goes to the limit 𝑓′(𝑐). (You can write these two facts 

in the form: lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
= 𝑓′(𝑐) and lim

ℎ→0

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
= 𝑔′(𝑐) ). 

4. We still have two more limits to consider. They are:  

(i) lim
ℎ→0

𝑓(𝑐 + ℎ) and  

(ii) lim
ℎ→0

𝑔(𝑐).   

Since 𝑓(𝑥) is differentiable at 𝑥 = 𝑐, it is continuous at 𝑥 = 𝑐. So the 

first limit is just lim
ℎ→0

𝑓(𝑐 + ℎ) = 𝑓(𝑐) . As for the second limit, since 

𝑔(𝑐) is a constant function, so its limit is given by lim
ℎ→0

𝑔(𝑐) = 𝑔(𝑐). 

5. Combining all the above, we get       

lim
ℎ→0

𝑓(𝑐 + ℎ)  lim
ℎ→0

[𝑔(𝑐 + ℎ) − 𝑔(𝑐)]

ℎ
′ + 𝑔(𝑐) lim

ℎ→0
 
𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

= 𝑓(𝑐)𝑔′(𝑐) + 𝑔(𝑐)𝑓′(𝑐). 

 



Appendix 

I didn’t give proofs of the Quotient Rule and the Chain Rule. 

Here below are some ideas about their proofs. If you’re interested, you can take a look 

at them. 

 

Quotient Rule 

This rule is: (
𝑓

𝑔
)

′
(𝑐) =

𝑔(𝑐)𝑓′(𝑐)−𝑓(𝑐)𝑔′(𝑐)

[𝑔(𝑐)]2
 , where 𝑔′(𝑐) ≠ 0 

 

Proof: 

Step 1: Prove the simple case (
1

𝑔
)

′
(𝑐) =

−𝑔′(𝑐)

[𝑔(𝑐)]2  

To prove this, consider 
(

1

𝑔(𝑥)
−

1

𝑔(𝑐)
)

𝑥−𝑐
=

−(𝑔(𝑥)−𝑔(𝑐))

(𝑥−𝑐)𝑔(𝑥)𝑔(𝑐)
 

 

Step 2: Let 𝑥 → 𝑐.  

(Main difficulty) Make sure that “from the assumption 𝑔(𝑐) ≠ 0, it follows that for 

all 𝑥 near to 𝑐, 𝑔(𝑥) ≠ 0 also. (This requires more mathematics and can be done 

using 𝜀 − 𝛿 language). 

Assuming that this can be proved, we then have 

lim
𝑥→𝑐

(
1

𝑔(𝑥)
−

1
𝑔(𝑐)

)

𝑥 − 𝑐
= lim

𝑥→𝑐

−(𝑔(𝑥) − 𝑔(𝑐))

(𝑥 − 𝑐)𝑔(𝑥)𝑔(𝑐)
=

1

𝑔(𝑐)
⋅  lim

𝑥→𝑐
−

𝑔(𝑥) − 𝑔(𝑐)

𝑥 − 𝑐
lim
𝑥→𝑐

1

𝑔(𝑥)
 

 =
1

𝑔(𝑐)
⋅  lim

𝑥→𝑐
−

𝑔(𝑥)−𝑔(𝑐)

𝑥−𝑐
⋅

1

lim
𝑥→𝑐

𝑔(𝑥)
=

1

[𝑔(𝑐)]2 𝑔′(𝑐) 

as required. 

 

Step 3: Next we use the product rule to get (
𝑓

𝑔
)

′
(𝑐) =

𝑔(𝑐)𝑓′(𝑐)−𝑓(𝑐)𝑔′(𝑐)

[𝑔(𝑐)]2
. 

To do this, we consider (𝑓 ⋅ (
1

𝑔
))

′

(𝑐) = 𝑓(𝑐) ⋅ (
1

𝑔
)

′
(𝑐) + 𝑓′(𝑐) ⋅ (

1

𝑔(𝑐)
) 

= 𝑓(𝑐) ⋅ (−
𝑔′(𝑐)

(𝑔(𝑐))
2) +

𝑓′(𝑐)

𝑔(𝑐)
 

=
−𝑓(𝑐)𝑔′(𝑐) + 𝑔(𝑐)𝑓′(𝑐)

(𝑔(𝑐))
2  

as required. 

 



Chain Rule: 

This rule is like “cancellation” in fraction, e.g. 
1

2
×

2

3
=

1

3
. 

For derivatives, we have 
𝑑𝑓(𝑢),

𝑑𝑢
⋅

𝑑𝑢(𝑥)

𝑑𝑥
=

𝑑𝑓(𝑢(𝑥))

𝑑𝑥
  

Example. 
𝑑 sin(𝑒𝑥)

𝑑𝑥
=

𝑑 sin(𝑢)

𝑑𝑢
 
𝑑𝑢

𝑑𝑥
, where we let 𝑢 = 𝑒𝑥. 

Now 
𝑑 sin(𝑢)

𝑑𝑢
= cos(𝑢), but 𝑢 = 𝑒𝑥, so 

𝑑 sin(𝑢)

𝑑𝑢
= cos(𝑒𝑥). 

Next, 
𝑑𝑢

𝑑𝑥
=

𝑑 𝑒𝑥

𝑑𝑥
= 𝑒𝑥. 

Combining everything, we get 
𝑑 sin(𝑒𝑥)

𝑑𝑥
= cos(𝑒𝑥)𝑒𝑥 

Remark: 

In the line above, I sometimes wrote 𝑢, at other times 𝑢(𝑥). Both mean the same 

thing – i.e. it is about the function 𝑢 which is a function of the variable 𝑥. When I wrote 

𝑢, I omitted the variable 𝑥 to make the notation simpler. When I wrote 𝑢(𝑥), I wanted to 

make the reader understand that this function, 𝑢, depends on 𝑥. 

  

Another way of writing the Chain Rule: 

𝑓(𝑔(𝑐))
′

= 𝑓′(𝑔(𝑐)) ⋅ 𝑔′(𝑐) 

 

To prove it, first consider 
𝑓(𝑔(𝑐+ℎ))−𝑓(𝑔(𝑐))

ℎ
=

𝑓(𝑔(𝑐+ℎ))−𝑓(𝑔(𝑐))

𝑔(𝑐+ℎ)−𝑔(𝑐)
⋅

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
 

Then let 𝑔(𝑐 + ℎ) = 𝑔(𝑐) + 𝑘, this leads to “as ℎ → 0, then 𝑘 → 0” by the 

continuity of 𝑔(𝑥) at 𝑥 = 𝑐. 

 

Hence 
𝑓(𝑔(𝑐+ℎ))−𝑓(𝑔(𝑐))

𝑔(𝑐+ℎ)−𝑔(𝑐)
⋅

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
=

𝑓(𝑔(𝑐)+𝑘)−𝑓(𝑔(𝑐))

𝑘
⋅

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
 

and also lim
ℎ→0

𝑓(𝑔(𝑐+ℎ))−𝑓(𝑔(𝑐))

𝑔(𝑐+ℎ)−𝑔(𝑐)
⋅

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
= lim

ℎ→0

𝑓(𝑔(𝑐)+𝑘)−𝑓(𝑔(𝑐))

𝑘
⋅ lim

ℎ→0

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
 

= lim
𝑘→0

𝑓(𝑔(𝑐) + 𝑘) − 𝑓(𝑔(𝑐))

𝑘
⋅ lim

ℎ→0

𝑔(𝑐 + ℎ) − 𝑔(𝑐)

ℎ
 

= 𝑓′(𝑔(𝑐)) ⋅ 𝑔′(𝑐) 

 

Remark: Question is: “What happens if 𝑔(𝑐 + ℎ) − 𝑔(𝑐) = 0 ?” 

Answer: Do directly the computation, i.e. 



lim
ℎ→0

𝑓(𝑔(𝑐 + ℎ)) − 𝑓(𝑔(𝑐))

ℎ
= lim

ℎ→0

𝑓(𝑔(𝑐) + 𝑘) − 𝑓(𝑔(𝑐))

𝑘
lim
ℎ→0

𝑔(𝑐 + ℎ) − 𝑔(𝑐)

ℎ
 

Here though 𝑘 may be zero, but it doesn’t matter. Why? Because now the left-hand 

side is zero, while the left-hand side contains 2 terms, the term lim
ℎ→0

𝑓(𝑔(𝑐)+𝑘)−𝑓(𝑔(𝑐))

𝑘
 

and the term lim
ℎ→0

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
. Both of them are known to be finite numbers (because 

we are assuming that the derivative 𝑓′(𝑔(𝑐)) and 𝑔′(𝑐) exists. 

 

Now one of them is zero, i.e. lim
ℎ→0

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
= 0 because 𝑔(𝑐 + ℎ) = 𝑔(𝑐) for 

infinitely many values of ℎ near 0. It follows that 𝑔′(𝑐) = 0. 

 

Finally, we know that 𝑓′(𝑔(𝑐)) ⋅ 𝑔′(𝑐) = 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 × 0 = 0. 

 

So left-hand side (which is zero) is equal to the right-hand side, which is also zero. 

 

Implicit Differentiation 

In high schools, you may have learned this way of computing derivative of a function: 

 

𝑥2 + 𝑦2 = 𝑎2 

Then compute the derivative of 𝑥, then of 𝑦, then of 𝑎 (which is on the right-hand 

side of the equation) all with respect to the independent variable 𝑥. Having done this, 

we obtain 

𝑑𝑥2

𝑑𝑥
+

𝑑𝑦2

𝑑𝑥
=

𝑑𝑎2

𝑑𝑥
 

Now 
𝑑𝑥2

𝑑𝑥
= 2𝑥, 

𝑑𝑦2

𝑑𝑥
=

𝑑𝑦2

𝑑𝑦

𝑑𝑦

𝑑𝑥
= 2𝑦 ⋅ 𝑦′ and 

𝑑𝑎2

𝑑𝑥
= 0 

 

Result: We get now 2𝑥 + 2𝑦𝑦′ = 0 implying 𝑦′ =
−𝑥

𝑦
. 

 

Remark: To compute the value of this derivative, we need two numbers, i.e. both 𝑥 

and 𝑦. Or we can express 𝑦 in terms of 𝑥 using the equation  

𝑥2 + 𝑦2 = 𝑎2 

to get 𝑦′ = −
𝑥

±√𝑎2−𝑥2
= ∓ (

𝑥

√𝑎2−𝑥2
).  

 



Question: Why can we do this? 

 

Answer: This is due to the  

 

Implicit Function Theorem, which roughly says: 

Given any function of two variables 𝑥 and 𝑦, i.e. 𝑓(𝑥, 𝑦) and an equation 

𝑓(𝑥, 𝑦) = 𝑐 (the right-hand side is a constant), then we have 

 

1. 𝑦 is a function of 𝑥 or 

2. 𝑥 is a function of 𝑦. 

 

In symbols, we write the sentence “𝑦 is a function of 𝑥” as “𝑦 = 𝑦(𝑥)”. (We don’t 

write things like “𝑦 = 𝑓(𝑥)” because that would need an extra letter 𝑓.) 

Similarly, the second sentence becomes 𝑥 = 𝑥(𝑦). 

 

An Example (& Picture) 

Consider the Lemniscate (which is the “Figure of 8” curve (among the many curves in 

the 𝑥𝑦 −plane) given by equations such as (𝑥2 + 𝑦2)2 − 𝑥2 + 𝑦2 = 0). 

 

Each of those curves in the 𝑥𝑦 −plane is a contour line (actually “curve”) formed 

by intersecting the surface 𝑧 = (𝑥2 + 𝑦2)2 − 𝑥2 + 𝑦2 with a plane (of certain 

height). 



Method to explain why (𝑥2 + 𝑦2)2 − 𝑥2 + 𝑦2 = 0 describes a curve 

 

1. Think of the equation as two equations, i.e. 𝑧 = (𝑥2 + 𝑦2)2 − 𝑥2 + 𝑦2 and 𝑧 =

𝑘; 

2. The first formula describes a “surface” in the 3D space (why? Because to each 

point (𝑥, 𝑦) in the 2D plane, a “height” given by (𝑥2 + 𝑦2)2 − 𝑥2 + 𝑦2 is 

associated); 

3. The second formulas describes a plane, i.e. the 𝑥𝑦 −plane in the 3D space; 

4. Together they describe the “intersection” of a surface and a plane, as shown in the 

above picture (here we have shown intersection of the surface with planes of 

various heights); 

5. When such “intersection” curves are projected to the 𝑥𝑦 −plane, we obtained a 

collection of curves in the 𝑥𝑦 −planes. These curves are known as “contour lines” 

(actually they are not “lines” but “curves”). 

 

Summary 

From this example, we see that an equation of the form 𝐹(𝑥, 𝑦) = 0 describes 

curve(s) “implicitly”. Since it is about curve(s), we can (theoretically) make 𝑦 the 

subject, i.e. write in the form “𝑦 = function of 𝑥” (or 𝑦 = 𝑦(𝑥)). 

 

Because we can write it in this form, so we can differentiate both sides of the equation 

𝐹(𝑥, 𝑦) = 0 with respect to the variable 𝑥. 

 

Examples: 

1. Find 
𝑑 ln 𝑥

𝑑𝑥
. 

Answer: Let 𝑦 = ln 𝑥, then 𝑒𝑦 = 𝑥 or 𝑒𝑦 − 𝑥 = 0. Now we have an 

equation of the form 𝐹(𝑥, 𝑦) = 0.  

By the Implicit Function Theorem, we know that “implicitly” 𝑦 is a function 

of 𝑥. (symbolically written as 𝑦 = 𝑦(𝑥)) 

So we can differentiate both sides of the equation 𝑒𝑦 − 𝑥 = 0 with respect to 

𝑥 to obtain 
𝑑

𝑑𝑥
(𝑒𝑦 − 𝑥) =

𝑑0

𝑑𝑥
⟹

𝑑𝑒𝑦

𝑑𝑥
−

𝑑𝑥

𝑑𝑥
= 0 ⟹

𝑑𝑒𝑦

𝑑𝑦

𝑑𝑦

𝑑𝑥
− 1 = 0 

⟹ 𝑒𝑦 ⋅
𝑑𝑦

𝑑𝑥
= 1 ⟹

𝑑𝑦

𝑑𝑥
=

1

𝑒𝑦 =
1

𝑥
 (because by definition 𝑒𝑦 = 𝑥). 

2. Find 
𝑑 arcsin(𝑥)

𝑑𝑥
. 

Answer: Let 𝑦 = arcsin(𝑥), then sin(𝑦) = 𝑥. Hence sin(𝑦) − 𝑥 = 0. 



Differentiate both sides of the equation (remembering that 𝑦 = 𝑦(𝑥)). we 

obtain 
𝑑

𝑑𝑥
(sin(𝑦) − 𝑥) =

𝑑0

𝑑𝑥
⟹

𝑑 sin(𝑦)

𝑑𝑦

𝑑𝑦

𝑑𝑥
−

𝑑𝑥

𝑑𝑥
= 0 ⟹ cos(𝑦)𝑦′ = 1 

𝑦′ =
1

cos(𝑦)
=

1

√1 − sin2(𝑦)  
=

1

√1 − 𝑥2
 

Remark: We said “roughly” because the theorem requires some “differentiability” 

conditions on the function 𝑓(𝑥, 𝑦) which is usually satisfied. Also, the “or” can mean 

“either/or” or “both”. 


