MATH1010-i

Week 5-7 (part 1)

Covered:

- Four rules of derivatives (i.e. $+$, $-$, \times , \div)
- Mentioned Chain Rule (i.e. derivative of composite function of two functions)

Four rules of derivatives

Assumption: In the following let $f(x)$, $g(x)$ be two functions, both having the same domain, and both differentiable at the point $x = c$ in the domain. Then we have (*) $f(x) \pm g(x)$, $f(x)g(x)$, $f(x)/g(x)$ are all differentiable at $x = c$. (For the last one, one has to make the extra assumption that $g(c) \neq 0$.) Furthermore, the derivatives of these "sum", "difference", "product" and "quotient" functions at the point $x = c$ are given by formulas listed below:

1. The derivative of the sum function $f(x) + g(x)$ at $x = c$ (If you like, you can give a name to this function, calling it for example $(f + g)(x)$ or $h(x)$) has the following formula.

$$
\left. \frac{d(f(x) + g(x))}{dx} \right|_{x=c} = f'(c) + g'(c)
$$

2. Similarly, for the function $f(x) - g(x)$, we have

$$
\left. \frac{d(f(x) - g(x))}{dx} \right|_{x=c} = f'(c) - g'(c)
$$

3. (Product Rule) For product of these two functions, the formula is slightly different, i.e.

$$
\left. \frac{d(f(x)g(x))}{dx} \right|_{x=c} = g(c)f'(c) + g'(c)f(c)
$$

Remark: In the case when $g(x) \equiv k$ (i.e. it is constantly equal to k), the above formula has the simpler form

$$
\left. \frac{d(kf(x))}{dx} \right|_{x=c} = kf'(c)
$$

4. (Quotient Rule) For quotient, it is

$$
\left. \frac{d(f(x)g(x))}{dx} \right|_{x=c} = \frac{f'(c)g(c) - g'(c)f(c)}{(g(c))^2}
$$

Idea of Proof of the Product Rule

We just outline one or two of the ideas. If you are interested in more detail, just send me an e-mail. I will explain more to you.

A Preparatory Result

To show the product rule, we need the following "little" result (called "lemma"):

Lemma (Differentiable at $x = c \Rightarrow$ continuous at $x = c$.)

Assume $f(x)$ is differentiable at $x = c$, then $f(x)$ is continuous at $x = c$.

Proof:

Main idea is to start from the statement $\lim_{h\to 0} f(c+h) = f(c)$ (definition of

"continuous at $x = c$.") and try to connect it to the limit $\lim_{h \to 0}$ $f(c+h)-f(c)$ $\frac{h^{(1)}-f(c)}{h} = f'(c)$ (definition of "differentiable at $x = c$.").

The connection can be established if one looks at the expressions:

(i)
$$
f(c+h) - f(c)
$$
 and

(ii)
$$
\frac{f(c+h)-f(c)}{h}
$$

This is because $f(c+h) - f(c) = \frac{f(c+h)-f(c)}{h}$ $\frac{h^{(1)}(c)}{h} \cdot h$

Now we know that in the above equation, the limit $\lim_{h\to 0}$ $f(c+h)-f(c)$ $\frac{a^{n}}{n}$ and the limit

lim *h* exist.

Furthermore, the first of them is equal to $f'(c)$, which is a finite number. The second one is equal to zero.

Combining all these, we get for the right-hand side:

$$
\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \cdot \lim_{h \to 0} h = f'(c) \cdot 0 = 0
$$

It follows that the limit of the left-hand side also exists and is given by

$$
\lim_{h \to 0} (f(c+h) - f(c)) = \lim_{h \to 0} \left(\frac{(f(c+h) - f(c))}{h} h \right) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \cdot \lim_{h \to 0} h
$$

= 0

Conclusion: We have proved $\lim_{h\to 0} (f(c+h) - f(c)) = 0$ or equivalently

 $\lim_{h \to 0} f(c + h) = f(c)$

Steps of the Proof of Product Rule

1. Consider the "Difference Quotient" i.e.

$$
\frac{f(c+h)g(c+h)-f(c)g(c)}{h}
$$

2. Rewrite it in the form (because we only know the following limits to exist: (i)

lim ℎ→0 $f(c+h)-f(c)$ $\frac{h^{(n-1)(c)}}{h}$, (ii) $\lim_{h\to 0}$ $g(c+h)-g(c)$ $\frac{f(y-g(t))}{h}$):

$$
\frac{f(c+h)g(c+h) - f(c+h)g(c) + f(c+h)g(c) - f(c)g(c)}{h}
$$

Grouping terms we get from the above:

$$
\frac{f(c+h)[g(c+h)-g(c)]}{h}+g(c)\frac{f(c+h)-f(c)}{h}
$$

3. Take limit $h \to 0$. The term $\frac{g(c+h)-g(c)}{h}$ goes to the limit $g'(c)$. On the other

hand, the term $\frac{f(c+h)-f(c)}{h}$ goes to the limit $f'(c)$. (You can write these two facts

in the form:
$$
\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = f'(c)
$$
 and $\lim_{h \to 0} \frac{g(c+h) - g(c)}{h} = g'(c)$.

- 4. We still have two more limits to consider. They are:
	- (i) $\lim_{h\to 0} f(c+h)$ and
	- (ii) $\lim_{h\to 0} g(c)$.

Since $f(x)$ is differentiable at $x = c$, it is continuous at $x = c$. So the first limit is just $\lim_{h\to 0} f(c+h) = f(c)$. As for the second limit, since

 $g(c)$ is a constant function, so its limit is given by $\lim_{h\to 0} g(c) = g(c)$.

5. Combining all the above, we get

$$
\lim_{h \to 0} f(c+h) \lim_{h \to 0} \frac{[g(c+h) - g(c)]}{h} + g(c) \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}
$$

$$
= f(c)g'(c) + g(c)f'(c).
$$

Appendix

I didn't give proofs of the Quotient Rule and the Chain Rule. Here below are some ideas about their proofs. If you're interested, you can take a look at them.

Quotient Rule

This rule is: $\left(\frac{f}{f}\right)$ $\frac{f}{g}f'(c) = \frac{g(c)f'(c)-f(c)g'(c)}{[g(c)]^2}$ $\frac{(c)-f(c)g'(c)}{[g(c)]^2}$, where $g'(c) \neq 0$

Proof:

Step 1: Prove the simple case $\left(\frac{1}{2}\right)$ $\left(\frac{1}{g}\right)'(c) = \frac{-g'(c)}{[g(c)]^2}$ $[g(c)]^2$

To prove this, consider $\frac{\left(\frac{1}{g}\right)^2}{g}$ $\frac{1}{g(x)} - \frac{1}{g(x)}$ $\frac{1}{g(c)}$ $\frac{\overline{x} - \overline{g(c)}}{x-c} = \frac{-(g(x)-g(c))}{(x-c)g(x)g(c)}$ $(x-c)g(x)g(c)$

Step 2: Let $x \to c$.

(Main difficulty) Make sure that "from the assumption $g(c) \neq 0$, it follows that for all x near to c, $g(x) \neq 0$ also. (This requires more mathematics and can be done using $\varepsilon - \delta$ language).

Assuming that this can be proved, we then have

$$
\lim_{x \to c} \frac{\left(\frac{1}{g(x)} - \frac{1}{g(c)}\right)}{x - c} = \lim_{x \to c} \frac{-(g(x) - g(c))}{(x - c)g(x)g(c)} = \frac{1}{g(c)} \cdot \lim_{x \to c} \frac{g(x) - g(c)}{x - c} \lim_{x \to c} \frac{1}{g(x)} = \frac{1}{g(c)} \cdot \lim_{x \to c} \frac{g(x) - g(c)}{g(x)}
$$

as required.

Step 3: Next we use the product rule to get $\left(\frac{f}{f}\right)$ $\frac{f}{g}f'(c) = \frac{g(c)f'(c)-f(c)g'(c)}{[g(c)]^2}$ $\frac{(c)-f(c)y(c)}{[g(c)]^2}$. To do this, we consider $\int f \cdot \left(\frac{1}{f} \right)$ $\frac{1}{g}\big)\bigg)$ ′ $(c) = f(c) \cdot \left(\frac{1}{c}\right)$ $\left(\frac{1}{g}\right)'(c) + f'(c) \cdot \left(\frac{1}{g(c)}\right)$ $\frac{1}{g(c)}$ $= f(c) \cdot |$ $g'(c)$ $\left(\frac{g(c)}{g(c)\right)^2}$ + $f'(c)$ $g(c)$ = $-f(c)g'(c) + g(c)f'(c)$ $(g(c))^2$

as required.

Chain Rule:

This rule is like "cancellation" in fraction, e.g. $\frac{1}{2} \times \frac{2}{3}$ $\frac{2}{3} = \frac{1}{3}$ $\frac{1}{3}$.

For derivatives, we have $\frac{df(u)}{du} \cdot \frac{du(x)}{dx}$ $\frac{u(x)}{dx} = \frac{df(u(x))}{dx}$ dx

Example. $\frac{d \sin(e^x)}{dx}$ $\frac{\sin(e^x)}{dx} = \frac{d \sin(u)}{du}$ du du $\frac{du}{dx}$, where we let $u = e^x$.

Now $\frac{d \sin(u)}{du} = \cos(u)$, but $u = e^x$, so $\frac{d \sin(u)}{du}$ $\frac{\sin(u)}{du} = \cos(e^x).$

Next, $\frac{du}{dx} = \frac{d e^x}{dx}$ $\frac{e^x}{dx} = e^x.$

Combining everything, we get $\frac{d \sin(e^{x})}{dx}$ $\frac{\sin(e^{x})}{\partial x} = \cos(e^{x})e^{x}$

Remark:

In the line above, I sometimes wrote u, at other times $u(x)$. Both mean the same thing – i.e. it is about the function u which is a function of the variable x . When I wrote u, I omitted the variable x to make the notation simpler. When I wrote $u(x)$, I wanted to make the reader understand that this function, u , depends on x .

Another way of writing the Chain Rule:

$$
f(g(c))' = f'(g(c)) \cdot g'(c)
$$

To prove it, first consider $\frac{f(g(c+h)) - f(g(c))}{h} = \frac{f(g(c+h)) - f(g(c))}{g(c+h) - g(c)}$ $\frac{g(c+h)-f(g(c))}{g(c+h)-g(c)} \cdot \frac{g(c+h)-g(c)}{h}$ ℎ Then let $g(c + h) = g(c) + k$, this leads to "as $h \to 0$, then $k \to 0$ " by the continuity of $g(x)$ at $x = c$.

Hence
$$
\frac{f(g(c+h)) - f(g(c))}{g(c+h) - g(c)} \cdot \frac{g(c+h) - g(c)}{h} = \frac{f(g(c) + k) - f(g(c))}{k} \cdot \frac{g(c+h) - g(c)}{h}
$$

and also
$$
\lim_{h \to 0} \frac{f(g(c+h)) - f(g(c))}{g(c+h) - g(c)} \cdot \frac{g(c+h) - g(c)}{h} = \lim_{h \to 0} \frac{f(g(c) + k) - f(g(c))}{k} \cdot \lim_{h \to 0} \frac{g(c+h) - g(c)}{h}
$$

$$
= \lim_{k \to 0} \frac{f(g(c) + k) - f(g(c))}{k} \cdot \lim_{h \to 0} \frac{g(c+h) - g(c)}{h}
$$

$$
= f'(g(c)) \cdot g'(c)
$$

Remark: Question is: "What happens if $g(c + h) - g(c) = 0$?" Answer: Do directly the computation, i.e.

$$
\lim_{h \to 0} \frac{f(g(c+h)) - f(g(c))}{h} = \lim_{h \to 0} \frac{f(g(c) + k) - f(g(c))}{k} \lim_{h \to 0} \frac{g(c+h) - g(c)}{h}
$$

Here though k may be zero, but it doesn't matter. Why? Because now the left-hand side is zero, while the left-hand side contains 2 terms, the term $\lim_{h\to 0}$ $f(g(c)+k)-f(g(c))$ \boldsymbol{k}

and the term $\lim_{h\to 0}$ $g(c+h)-g(c)$ $\frac{h_1 - g_1(t)}{h}$. Both of them are known to be finite numbers (because we are assuming that the derivative $f'(g(c))$ and $g'(c)$ exists.

Now one of them is zero, i.e. $\lim_{h\to 0}$ $g(c+h)-g(c)$ $\frac{b-g(c)}{h} = 0$ because $g(c+h) = g(c)$ for infinitely many values of h near 0. It follows that $g'(c) = 0$.

Finally, we know that $f'(g(c)) \cdot g'(c) = a$ finite number $\times 0 = 0$.

So left-hand side (which is zero) is equal to the right-hand side, which is also zero.

Implicit Differentiation

In high schools, you may have learned this way of computing derivative of a function:

$$
x^2 + y^2 = a^2
$$

Then compute the derivative of x , then of y , then of α (which is on the right-hand side of the equation) all with respect to the independent variable x . Having done this, we obtain

Now
$$
\frac{dx^2}{dx} + \frac{dy^2}{dx} = \frac{da^2}{dx}
$$

Now
$$
\frac{dx^2}{dx} = 2x
$$
,
$$
\frac{dy^2}{dx} = \frac{dy^2}{dy} \frac{dy}{dx} = 2y \cdot y' \text{ and } \frac{da^2}{dx} = 0
$$

Result: We get now $2x + 2yy' = 0$ implying $y' = \frac{-x}{y}$ $\frac{1}{y}$.

Remark: To compute the value of this derivative, we need two numbers, i.e. both x and y. Or we can express y in terms of x using the equation

$$
x^2 + y^2 = a^2
$$

to get $y' = -\frac{x}{\sqrt{x^2}}$ $rac{x}{\pm\sqrt{a^2-x^2}} = \pm\left(\frac{x}{\sqrt{a^2-x^2}}\right)$ $\frac{x}{\sqrt{a^2-x^2}}$). Question: Why can we do this?

Answer: This is due to the

Implicit Function Theorem, which roughly says:

Given any function of two variables x and y , i.e. $f(x, y)$ and an equation $f(x, y) = c$ (the right-hand side is a constant), then we have

- 1. y is a function of x or
- 2. x is a function of y .

In symbols, we write the sentence " y is a function of x" as " $y = y(x)$ ". (We don't write things like " $y = f(x)$ " because that would need an extra letter f.) Similarly, the second sentence becomes $x = x(y)$.

An Example (& Picture)

Consider the Lemniscate (which is the "Figure of 8" curve (among the many curves in the xy -plane) given by equations such as $(x^2 + y^2)^2 - x^2 + y^2 = 0$.

Each of those curves in the xy –plane is a contour line (actually "curve") formed by intersecting the surface $z = (x^2 + y^2)^2 - x^2 + y^2$ with a plane (of certain height).

Method to explain why $(x^2 + y^2)^2 - x^2 + y^2 = 0$ describes a curve

- 1. Think of the equation as two equations, i.e. $z = (x^2 + y^2)^2 x^2 + y^2$ and $z =$ \boldsymbol{k} :
- 2. The first formula describes a "surface" in the 3D space (why? Because to each point (x, y) in the 2D plane, a "height" given by $\sqrt{(x^2 + y^2)^2 - x^2 + y^2}$ is associated);
- 3. The second formulas describes a plane, i.e. the xy –plane in the 3D space;
- 4. Together they describe the "intersection" of a surface and a plane, as shown in the above picture (here we have shown intersection of the surface with planes of various heights);
- 5. When such "intersection" curves are projected to the xy -plane, we obtained a collection of curves in the xy –planes. These curves are known as "contour lines" (actually they are not "lines" but "curves").

Summary

From this example, we see that an equation of the form $F(x, y) = 0$ describes curve(s) "implicitly". Since it is about curve(s), we can (theoretically) make y the subject, i.e. write in the form " $y =$ function of x" (or $y = y(x)$).

Because we can write it in this form, so we can differentiate both sides of the equation $F(x, y) = 0$ with respect to the variable x.

Examples:

1. Find $\frac{d \ln x}{dx}$.

Answer: Let $y = \ln x$, then $e^y = x$ or $e^y - x = 0$. Now we have an equation of the form $F(x, y) = 0$.

By the Implicit Function Theorem, we know that "implicitly" ν is a function of x. (symbolically written as $y = y(x)$)

So we can differentiate both sides of the equation $e^y - x = 0$ with respect to

x to obtain
$$
\frac{d}{dx}(e^y - x) = \frac{d}{dx} \Rightarrow \frac{de^y}{dx} - \frac{dx}{dx} = 0 \Rightarrow \frac{de^y}{dy} \frac{dy}{dx} - 1 = 0
$$

$$
\Rightarrow e^y \cdot \frac{dy}{dx} = 1 \Rightarrow \frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{x}
$$
 (because by definition $e^y = x$).

2. Find $\frac{d \arcsin(x)}{dx}$.

Answer: Let $y = \arcsin(x)$, then $\sin(y) = x$. Hence $\sin(y) - x = 0$.

Differentiate both sides of the equation (remembering that $y = y(x)$). we

obtain
$$
\frac{d}{dx}(\sin(y) - x) = \frac{d0}{dx} \Rightarrow \frac{d \sin(y)}{dy} \frac{dy}{dx} - \frac{dx}{dx} = 0 \Rightarrow \cos(y)y' = 1
$$

$$
y' = \frac{1}{\cos(y)} = \frac{1}{\sqrt{1 - \sin^2(y)}} = \frac{1}{\sqrt{1 - x^2}}
$$

Remark: We said "roughly" because the theorem requires some "differentiability" conditions on the function $f(x, y)$ which is usually satisfied. Also, the "or" can mean "either/or" or "both".