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Fundamental Theorem of Calculus 

 

Fundamental Theorem of Calculus relates “solving 
𝑑𝐹

𝑑𝑥
= 𝑓”, or equivalently, “computing 

∫ 𝑓(𝑥)𝑑𝑥”) to “Finding ‘area under’ the curve ‘𝑦 = 𝑓(𝑥)’”. 

 

The result goes like this: 

 

Theorem (Newton-Leibniz) 

Assumption: 𝑓: [𝑎, 𝑏] → ℝ is continuous 

Conclusion: 

1. The function 𝐴(𝑥) (also known as “area-finding function”) given by 𝐴(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑡=𝑥

𝑡=𝛼
 is a solution of the differential equation 

𝑑𝐹

𝑑𝑥
= 𝑓 

2. Area under 𝑦 = 𝑓(𝑥), where 𝑎∗ ≤ 𝑥 ≤ 𝑏∗ (𝑎∗, 𝑏∗ being any two numbers in (𝑎, 𝑏)) is 

given by 𝐹(𝑏∗) − 𝐹(𝑎∗), where 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥. (Of course, it is also equal to 

𝐴(𝑏∗ ) − 𝐴(𝑎∗)) 

 

Proof 

We need some tools: 

3. Integral mean value theorem. It says: the following: 

Assumption: 𝑓: [𝑎, 𝑏] → ℝ is a continuous function. 

Conclusion: ∃𝜉 ∈ [𝑎, 𝑏] such that ∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(𝜉) ⋅ (𝑏 − 𝑎)
𝑏

𝑎
 

 

Remark: Another way of saying the same thing is: 

∃𝜉 ∈ [𝑎, 𝑏] such that 
1

𝑏−𝑎
⋅  ∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(𝜉)

𝑏

𝑎
 which means “𝑓(𝜉)” is the average (or 

“mean”) value of the integral. 

 

(Step 1) Define the area-finding function 𝐴(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝛼
. First we show 

𝐴′(𝑥) = 𝑓(𝑥) 

To do this, consider the difference-quotient, then take limit. 

That is 

𝐴(𝑥 + ℎ) − 𝐴(𝑥)

ℎ
=
∫ 𝑓(𝑡)𝑑𝑡 −
𝑥+ℎ

𝛼 ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝛼

ℎ
=
∫ 𝑓(𝑡)𝑑𝑡
𝑥+ℎ

𝑥

ℎ
 



=
𝑓(𝜉)ℎ

ℎ
, ∃𝜉 between 𝑥 and 𝑥 + ℎ 

= 𝑓(𝜉), ∃𝜉 between 𝑥 and 𝑥 + ℎ 

Next, by Sandwich/Squeeze Theorem, since 𝜉 lies between 𝑥 and 𝑥 + ℎ, as ℎ → 0, 

𝜉 → 𝑥. 

 

Therefore, we have lim
ℎ→0

𝐴(𝑥+ℎ)−𝐴(𝑥)

ℎ
= 𝑓(𝑥) 

 

(Step 2) Idea is “compute the integration constant in two different ways” 

 

Now we have two functions, (i) 𝐴(𝑥) --- the area-finding function, (ii) any function 

solving the D.E. 
𝑑𝐹

𝑑𝑥
= 𝑓(𝑥). 

In (Step 1), we showed that 𝐴′(𝑥) = 𝑓(𝑥). This together with 𝐹′(𝑥) = 𝑓(𝑥) leads to the 

conclusion that 𝐹(𝑥) − 𝐴(𝑥) ≡ 𝐶. 

 

So now we compute 𝐶 in two ways. 

Evaluating at 𝑏∗, we get 𝐹(𝑏∗) − 𝐴(𝑏∗) = 𝐶 

Evaluating at 𝑎∗, we get 𝐹(𝑎∗) − 𝐴(𝑎∗) = 𝐶 

 

So we get 

𝐹(𝑏∗) − ∫ 𝑓(𝑡)𝑑𝑡
𝑏∗

𝛼

= 𝐶 

𝐹(𝑎∗) − ∫ 𝑓(𝑡)𝑑𝑡
𝑎∗

𝛼

= 𝐶 

Now we choose 𝛼 = 𝑎∗ and get  

𝐹(𝑎∗) − ∫ 𝑓(𝑡)𝑑𝑡
𝑎∗

𝑎∗
= 𝐹(𝑎∗) − 0 ≡ 𝐶 

Hence 𝐶 = 𝐹(𝑎∗). 

 

Putting this into  

𝐹(𝑏∗) − ∫ 𝑓(𝑡)𝑑𝑡
𝑏∗

𝑎∗
≡ 𝐶 

we obtain 

𝐹(𝑏∗) − ∫ 𝑓(𝑡)𝑑𝑡
𝑏∗

𝑎∗
= 𝐹(𝑎∗) 

Therefore we conclude that  



𝐹(𝑏∗) − 𝐹(𝑎∗) = ∫ 𝑓(𝑡)𝑑𝑡
𝑏∗

𝑎∗
 

as requested. 

 

Riemann Sum 

Summary about Integrals 

 Two types of integrals – indefinite integrals, definite integrals 

 Indefinite integrals are written as ∫ 𝑓(𝑥)𝑑𝑥. They are solutions of the Differential 

Equation 
𝑑𝐹

𝑑𝑥
= 𝑓(𝑥). They are “unique” up to a constant. 

 Indefinite integrals exists if 𝑓 is a continuous function on [𝑎, 𝑏]. 

 Indefinite integral “improves” smoothness. Reason: if 𝑓 is “continuous”, then 𝐹 is 

differentiable, so it’s better. 

 Definite integral are “area” (i.e. directed/signed area) “under” the curve 𝑦 = 𝑓(𝑥). 

 Fundamental Theorem of Calculus (FTC) says: “one can compute ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 using 

(i) find ∫ 𝑓(𝑥)𝑑𝑥; (ii) give it a name, e.g. 𝐹(𝑥) ≔ ∫ 𝑓(𝑥)𝑑𝑥 (≔ means “left-hand 

side is the name of the right-hand side”); (iii) Compute the number 𝐹(𝑏) − 𝐹(𝑎). 

 It is not always possible to use FTC to find area. One important example is 

∫ 𝑒−𝑥
2
𝑑𝑥

𝑏

𝑎
. This integral (actually “definite integral”) comes up in Statistics. It 

cannot be computed using FTC, because there is a theorem saying that 

 

(An elementary function is, roughly speaking, any function one can build starting from * 

polynomials, trig. functions, exponential function, log function using +,−,×,÷, √
𝑛

 a 

finite number of times.) 

 Because of the preceding bullet point, we sometimes still need to use something 

known as Riemann Sum. 

 

Riemann Sum via an Example 

The following simple example illustrates the idea of Riemann Sum. 

Consider 𝑓(𝑥) = 𝑥, 0 ≤ 𝑥 ≤ 1. 

Goal: Compute (via “approximation by rectangles”) ∫ 𝑥𝑑𝑥
1

0
. 

 

Solution: 

There is no “elementary” function 𝐹 which satisfies the Differential 

Equation 
𝑑𝐹

𝑑𝑥
= 𝑒−𝑥

2
. 



Step 1) Partition [0,1] into 𝑛 subintervals. Many ways to do it. Simplest way – divide 

them into 𝑛 equal-width subintervals, i.e.  

𝑥0 = 0, 𝑥1 =
1

𝑛
, 𝑥2 =

2

𝑛
,⋯ , 𝑥𝑘 =

𝑘

𝑛
,⋯ , 𝑥𝑛 = 1 

Step 2) Form the “approximate sum” (many ways to do it) by considering the right 

endpoint of each subinterval (one can of course consider any other convenient point 𝜉𝑘 

in [𝑥𝑘−1, 𝑥𝑘], e.g. mid-point, left-endpoint, maximum point …) , i.e. 

∑𝑓(right endpoint of [𝑥𝑘−1, 𝑥𝑘]) ⋅ (𝑥𝑘 − 𝑥𝑘−1)⏟        
Δ𝑥𝑘

𝑛

𝑘=1

 

Step 3) The above line is actually ∑ 𝑓(𝑥𝑘)Δ𝑥𝑘 =
𝑛
𝑘=1 ∑

𝑘

𝑛
⋅
1

𝑛
 𝑛

𝑘=1 = (
1

𝑛2
)∑ 𝑘 =𝑛

𝑘=1

(
1

𝑛2
) (
(𝑛+1)𝑛

2
) = (

𝑛

2𝑛
) + (

1

2
) 

 

Step 4) Take limit 𝑛 → ∞ to get   lim
𝑛→∞

∑ 𝑓(𝑥𝑘)Δ𝑥𝑘 =
1

2
𝑛
𝑘=1  . 

Remark: 

If we reconsider the problem, we see that if we had 𝑓(𝑥) = 𝑥𝑝, then the above 

computation could yield the answer ∫ 𝑓(𝑥)𝑑𝑥 =
1

𝑝+1

1

0
, provided we have the knowledge 

of the sum ∑ 𝑘𝑝.𝑛
𝑘=1  However, such formulas are very complicated. 

 

To overcome this, we can consider “non-equalwidth” partitioning. 

 

Conclusions 

4. Computing ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 using Riemann Sum is tedious. 

5. Question: Why is it true that “if 𝑓 is continuous on [𝑎, 𝑏], then 
𝑑𝐹

𝑑𝑥
= 𝑓(𝑥) has 

solution”? Reason is this – (i) one can consider the “upper sum”, which is 

𝑈𝑆𝑢𝑚 =∑𝑓(𝑚𝑎𝑥. 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 [𝑥𝑘−1, 𝑥𝑘]) ⋅ Δ𝑥𝑘

𝑛

𝑘=1

 

One can consider also the “lower sum”, which is  

𝐿𝑆𝑢𝑚 = ∑𝑓(𝑚𝑖𝑛. 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 [𝑥𝑘−1, 𝑥𝑘]) ⋅ Δ𝑥𝑘

𝑛

𝑘=1

 



Then one can show that (under the Assumption that “𝑓 is continuous in [𝑎, 𝑏]”) 

𝐿𝑆𝑢𝑚 ≤∑𝑓(𝜉𝑘) ⋅ Δ𝑥𝑘

𝑛

𝑘=1

≤ 𝑈𝑆𝑢𝑚 

for any convenient point 𝜉𝑘 in [𝑥𝑘−1, 𝑥𝑘]. 

 

(ii) Now 

𝑈𝑆𝑢𝑚 − 𝐿𝑆𝑢𝑚 =∑{𝑓(𝑚𝑎𝑥. 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 [𝑥𝑘−1, 𝑥𝑘]) − 𝑓(𝑚𝑎𝑥. 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 [𝑥𝑘−1, 𝑥𝑘])} ⋅ Δ𝑥𝑘

𝑛

𝑘=1

 

Here 𝑓(𝑚𝑎𝑥. 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 [𝑥𝑘−1, 𝑥𝑘]) − 𝑓(𝑚𝑎𝑥. 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 [𝑥𝑘−1, 𝑥𝑘]) measures the “jump” (or 

“gap”) between the “max value” and “min value” of 𝑓 in the subinterval. 

So if 𝑓 is continuous, one can show that this number can be made as small as we wish (here one 

needs to use the concept of “uniform continuity”). 

Because of the above, one can show |𝑈𝑆𝑢𝑚 − 𝐿𝑆𝑢𝑚| can be made as small as one likes. As the 

Riemann sum is sandwiched between the 𝑈𝑆𝑢𝑚 and the 𝐿𝑆𝑢𝑚, the above method shows that all 

3 objects, i.e. the 𝑈𝑆𝑢𝑚, the 𝐿𝑆𝑢𝑚 and the 𝑅𝑖𝑒𝑚𝑎𝑛𝑛 𝑆𝑢𝑚 have the same limit, denoted by the 

symbol ∫ 𝑓(𝑥)𝑑𝑥.
𝑏

𝑎
 

 

 

Functions Revisited 

Recall that the most important object in “Calculus” is “function”. In this course, we 

discussed simple functions such as polynomials, rational functions, trig. Functions, 

exponential functions, logarithm functions and their properties, such as their domains, 

ranges, whether they are increasing, decreasing etc. 

 

Abstractly seen, a function is a “rule”, i.e. 𝑥 ↦ 𝑦, where 𝑦 = 𝑓(𝑥) (meaning “𝑦 is the 

value of the function computed/evaluated at 𝑥”) 

 

 Looking back, one should be able to notice that the trig. functions, log function, exp 

functions are defined by “infinite processes”, whereas polynomial functions and 

rational functions are defined by “finite processes”. The trig. functions and 

exponential functions, log functions are actually examples of “mathematical objects” 

known as power series. 

E.g. 𝑒𝑥 = ∑
(𝑥−0)𝑘

𝑘!
∞
𝑘=0  , ln(𝑦) = (𝑦 − 1) +

(𝑦−1)2

2
−
(𝑦−1)3

3
+⋯  

(Here the number in “red” is called the center of the power series) 

 

Questions: 



1. The above power series look like Taylor series (i.e. the series one obtains when the error 

terms go to zero as 𝑛 → ∞). So, we can ask “do all power series come from power series 

of some well-known functions?”) 

2. Are there other infinite process methods to define functions? 

 

Answers 

1. The answer to Question 1 is “no”. There are many power series, which are not related to 

any well-known functions; 

2. As for Question 2, there are other ways to define “new” functions using “infinite 

processes”. One way is by means of “integration”.  

   

An Example 

The Gamma function given by Γ(𝛼) ≔ ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥
𝑥=∞

𝑥=0
. 

 

Issues 

 This integral integrate from 0 to ∞, so the domain (of integration) is [0,∞). 

 We would like to know how to differentiate such kind of functions (defined by 

integration) 

 

First we look at the “differentiation” issue. 

 

Questions 

As before, when given a function, we want to know how to compute its derivative.  

 What is Γ′(𝛼) ?  

 Related question: What is 𝐹′(𝑣) if 𝐹(𝑣) ≔ ∫ 𝑓(𝑣)𝑑𝑣
𝑢=𝑞(𝑣)

𝑢=𝑝(𝑣)
 ? (where the lower 

integration limit is a function of 𝑣. Also the upper limit is a function of 𝑣).  

What is 𝐹′(𝑣) if 𝐹(𝑣) ≔ ∫ 𝑓(𝑢, 𝑣)𝑑𝑣
𝑢=𝑞(𝑣)

𝑢=𝑝(𝑣)
 ? etc. 


