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Maximal Flow Problem

Definition

Let Q be the set of all distinct ordered pairs of elements of a
set V , that is,

Q = {(xi , xj ) | xi ∈ V , xj ∈ V}

The pair G = (V ,E) with E ⊂ Q, is called a directed graph, the
elements of E are called directed edges.

Definition

An incidence matrix can be defined for a directed graph. Let
A = (aij ), i = 1, · · · , |V |, j = 1, · · · , |E | be the incidence matrix
for a directed graph G(V ,E) defined as follows

aij =


−1 if ej = (xk , xi ), k 6= i ,
1 if ej = (xi , xk ), k 6= i ,
0 otherwise.

(1)
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The transshipment problem is a special class of network
flow problems. To be more specific, we consider the
problem of shipping a certain homogeneous commodity
from a specified origin, called the source, to a particular
destination, called the sink.

The flow network will generally consist of some
intermediate vertex, known as transshipment points,
through which the flows are rerouted.

At the transshipment points we impose the condition of
conservation of flow, i.e. what is shipped into it is shipped
out.
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Example

Consider a flow network given by the following diagram. Vertex
s is the source and vertex t is the sink. The number cij on edge
(i , j) represents the capacity of that edge.
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Let fij be the flow in edge (i , j) and f be the total flow from the
source s to the sink t . The maximal flow problem is to
determine the maximum value of v .

Maximize v

subject to


fs1 + fs2 − v = 0,

f1t + f12 − f21 − fs1 = 0,
f21 + f2t − f12 − fs2 = 0,

v − f1t − f2t = 0,

(2)

and



0 ≤ fs1 ≤ cs1,

0 ≤ fs2 ≤ cs2,

0 ≤ f12 ≤ c12,

0 ≤ f21 ≤ c21,

0 ≤ f1t ≤ c1t ,

0 ≤ f2t ≤ c2t .

(3)

The coefficient matrix on the L.H.S. of equations (2) is simply
the incidence matrix of this directed graph.
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For a general network N = (V ,E), constraints (2) and (3)
becomes ∑

j∈V

fij −
∑
j∈V

fji =


v , i = s
0, i 6= s, t
−v , i = t

(4)

0 ≤ fij ≤ cij , ∀(i , j) ∈ E (5)

Any set of numbers {fij} satisfying (4) and (5) is said to be a
feasible flow . The value f is called the value of the flow and is
sometimes denoted by v(f ) or simply v .

Mathematically, a flow, or more precisely an s-t flow, f is a
function from E into R+ such that

0 ≤ fij ≤ cij , ∀(i , j) ∈ E

and ∑
{j|(i,j)∈E}

fij =
∑

{j|(i,j)∈E}

fji , ∀ i ∈ V , i 6= s, t .
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For simplicity, given two subsets S and T of V and an s-t flow f
from E into R+, we use (S,T ) to denote the set
{(i , j) ∈ E |i ∈ S, j ∈ T} and

f (S,T ) ≡
∑

(i,j)∈(S,T )

fij .

If S equals to a singleton set {i}, we write f ({i},T ) = f (i ,T ). In
particular, f (i , j) = fij . In this notation, conservation of flows (4)
become

f (i ,V )− f (V , i) =


v(f ), i = s

0, i 6= s, t
−v(f ), i = t

(6)

where the value of the flow is given by

v(f ) = f (s,V )− f (V , s) = f (V , t)− f (t ,V ). (7)
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Example

Consider the network below where the numbers on the edges
represent the capacities.

An s-t flow of value 4 is drawn on the figures where the flow
value is marked by circles. Note that for examples
f (C,V ) = f (V ,C) = 4 and f (D,V ) = f (V ,D) = 0. Also
f (s,V ) = 4 = f (V , t) whereas f (V , s) = f (t ,V ) = 0.



Network Flow
Problems

Maximal Flow Problem

Methods for
Maximal-Flow
Problems

Maximal Flow and
Minimal Cut

LP Interpretation of
Max-flow Min-cut
Problem

12.10

Methods for Maximal-Flow Problems

First-label-first-scan Methods

To find a nearest path from a source s to a sink t .

At each step of the procedure, every vertex i ∈ V is either:
i) unlabeled (indicated by blank)
ii) labeled not scanned (indicated by a label `(i))
iii) labeled and scanned (`(i) followed by an ∗)

First-label-first-scan Method:
(1) Label vertex s by `(s) = s.
(2) If vertex t is labeled, an s-t path is obtained by tracing

backward from t to s using the labels on the vertices;
otherwise go to Step 3.

(3) If all labeled vertices are scanned, there exists no s-t path;
otherwise go to Step 4.

(4) Pick the first labeled but unscanned vertex i , label each
unlabeled vertex j such that (i, j) is an edge by `(j) = i .
Indicate vertex i as scanned and return to Step 2.
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Example

Consider the network:

An s-t path is 6 ← 5← 3 ← 2 ← 1.
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Flow Augmenting Path Algorithm for Maximal Flow:

Step 1 Find a s-t path with strictly positive flow capacity for each
edge in the path. If no such path exists, we are done.

Step 2 Search this path for the edge with the smallest flow
capacity, say c∗, and increase the flow in this path by c∗.

Step 3 Decrease by c∗ the flow capacity for each edge in this
path.

Step 4 Increase by c∗ the flow capacity in the opposite direction
for each edge in the path.

Step 5 Go back to Step 1.
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Example

Consider the following network where the numbers on the
edges represent the current flow capacities for the forward and
the backward directions.

Initially the flow v = 0; Augmenting path is 1→ 2→ 3→ 6 with
c∗ = 1.

v = 1; Augmenting path is 1→ 2→ 5→ 6 with c∗ = 2.
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v = 3; Augmenting path is 1→ 4→ 3→ 2→ 5→ 6 with
c∗ = 1. Notice that edge (3,2) is a backward edge.

v∗ = 4; there is no more augmenting paths. Thus the maximal
flow f ∗ is given by f (1,2) = 3, f (1,4) = 1, f (2,3) = 0,
f (2,5) = 3, f (3,6) = 1, f (4,3) = 1, f (5,6) = 3.
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Definition

Let P be an undirected path from s to t . An edge (i , j) on P is
said to be a forward edge if it is directed from s to t and
backward edge otherwise. P is said to be a flow augmenting
path with respect to a given flow f if
(1) f (i , j) < cij for each forward edge (i , j) on P, and
(2) f (i , j) > 0 for each backward edge (i , j) on P.

Thus the path 1→ 4→ 3→ 2→ 5→ 6 in the last iteration is a
flow augmenting path where 3→ 2 is a backward edge.
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Exercise

Consider the network:
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Maximal Flow and Minimal Cut

Definition

Given a network N = (V ,E) with source s and sink t . Let X
and X̄ be two non-empty subsets of V such that X ∩ X̄ = φ and
X ∪ X̄ = V . If s ∈ X and t ∈ X̄ , then (X , X̄ ) is called an s-t cut
(or simply a cut) of the network N. The capacity of a cut (X , X̄ ),
denoted by C(X , X̄ ), is the sum of the capacities of those
edges directed from a vertex in X to a vertex in X̄ , i.e.

C(X , X̄ ) =
∑

(i,j)∈(X ,X̄)

cij .
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Example

Consider the following network with capacities listed at the
corner of the vertices:
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Lemma (1)

Let f be an s-t flow and (X , X̄ ) an s-t cut, then

v(f ) = f (X , X̄ )− f (X̄ ,X ) = net flow across the s-t cut.

Proof.

We have by (6) and (7)

v(f ) = f (s,V )− f (V , s)

= f (s,V )− f (V , s) +
∑

i∈X ,i 6=s

[f (i ,V )− f (V , i)]

= f (X ,V )− f (V ,X )

= f (X , X̄ ) + f (X ,X )− f (X ,X )− f (X̄ ,X ).
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Lemma (2)

Given any s-t flow f and s-t cut (X , X̄ ), we have
v(f ) ≤ C(X , X̄ ). In particular, we have

max
f

v(f ) ≤ min
(X ,X̄)

C(X , X̄ ).

Proof.

Since f (X , X̄ ) ≤ C(X , X̄ ) and f (X̄ ,X ) ≥ 0, we have

v(f ) = f (X , X̄ )− f (X̄ ,X ) ≤ C(X , X̄ ).



Network Flow
Problems

Maximal Flow Problem

Methods for
Maximal-Flow
Problems

Maximal Flow and
Minimal Cut

LP Interpretation of
Max-flow Min-cut
Problem

12.21

Theorem (1)

(Augmentation Algorithm) An s-t flow f is a maximal flow if and
only if it admits no flow augmenting path from s to t.

Proof.

If an augmenting path exists, the current flow is clearly not a
maximal flow.
Now suppose f does not admit an augmenting path from s to t .
Let X be the set of vertices {i} including s for which there is an
augmenting path from s to i and X̄ be the complementary set
of vertices, i.e. X̄ = V \ X .
We claim that for all i ∈ X and j ∈ X̄ , we have f (i , j) = cij and
f (j , i) = 0.
For if f (i , j) < cij , obviously we are allowed to flow from i to j ,
and hence there will be an augmenting path from s to j . If
f (j , i) > 0, that means we have previously flow from j to i . Now
we can form an augmenting path from s to j by first going to i
and then augmenting that with a backward edge from i to j .
Hence in both cases, we have an augmenting path from s to j ,
a contradiction to the fact that j ∈ X̄ .
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Proof (con’t).

Since (X , X̄ ) is an s-t cut, we have by Lemma (1),

v(f ) = f (X , X̄ )− f (X̄ ,X ) =

=
∑

i∈X ,j∈X̄

f (i , j)−
∑

j∈X̄ ,i∈X

f (j , i)

=
∑

i∈X ,j∈X̄

c(i , j) = C(X , X̄ ),

i.e. f is a maximal flow.
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Theorem (2)

(The Max-flow Min-cut Theorem) For any network the maximal
flow value from vertex s to vertex t is equal to the minimal cut
capacity, i.e.

max
f

v(f ) = min
(X ,X̄)

C(X , X̄ ) .

Proof.

A unique minimal cut with respect to the given maximal flow is
constructed in the proof of the Theorem (1).
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Example

System of Distinct Representative
Five Senators b1, b2, b3, b4, b5 are members of three
committees a1, a2 and a3. The membership is as follows:

One member from each committee is to be represented in a
super-committee. Is it possible to send one distinct
representative from each of the committees?
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LP Interpretation of Max-flow Min-cut Problem

Prove the max-flow min-cut theorem again by using the
duality theorems of LP problems.

The LP for maximal flow problem can be stated as:

Max v = f (t , s)

(P) s.t.

{
f (i ,V )− f (V , i) = 0, ∀i ∈ V ,
0 ≤ f (i , j) ≤ cij , ∀(i , j) ∈ E .

(8)

Notice that there are |V |’s conservation constraints and
|E |’s capacity constraints.
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Let us write the cost vector of the primal problem in (9) as
cT = (0, . . . ,0,1), the right hand side vector as
bT = (0, . . . ,0| . . . , cij , . . .) and the solution vector as
xT = (. . . , fij , . . . , fts). Then we can write the coefficient matrix
of the primal in the form:
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Lemma (3)

The coefficient matrix A of the maximal flow problem is
unimodular.

Proof.

Partition A =

[
B
C

]
, where B corresponds to the vertex

constraints and C corresponds to the edge constraints.
Consider any k -by-k submatrices Mk of A. First we consider
the case where Mk is a submatrix of B only. Then there are
three cases: (i) all columns of Mk consist of two nonzero
entries, (ii) there is a column of Mk consisting of all zero
entries, and (iii) there is a column of Mk consisting of only one
nonzero entries. In case (i), then the two nonzero entries must
be 1 and −1. Hence if we sum all the rows in Mk , we have a
zero vector. Hence Mk is singular and therefore detMk = 0. In
case (ii), of course Mk is singular and therefore again
detMk = 0. In case (iii), then we can expand the determinant at
the only nonzero entry in that column and get
detMk = ±detMk−1. By repeating the arguments, we see that
the conclusion of the Lemma is valid.
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Proof. (con’t).

Now suppose Mk =

[
Bk
Ck

]
, where Bk and Ck are submatrices

of B and C respectively. If any one of the rows of Ck is zero,
then det(Mk ) = 0, and we are done. If one of the rows of Ck is
nonzero, then because of the form of C (which is an identity
matrix plus a zero column), the nonzero row must contain at
most one nonzero entry and the nonzero entry must be 1.
Expanding the determinant of Mk at that entry and we have
det(Mk ) = det(Mk−1), where Mk−1 is a square submatrix of Mk .
Now the proof can be completed by recursion as Mk−1 is just
an (k − 1)-by-(k − 1) submatrix of A.
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Prime and Dual Problem

Max v = f (t , s)

(Prime) s.t.

{
f (i ,V )− f (V , i) = 0, ∀i ∈ V ,
0 ≤ f (i , j) ≤ cij , ∀(i , j) ∈ E .

(9)

Min
∑

(i,j)∈E

cijwij

(Dual) subject to


ui − uj + wij ≥ 0, (i , j) ∈ E ,
ut − us ≥ 1,
ui unrestricted, i ∈ V ,
wij ≥ 0, (i , j) ∈ E .

(10)
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Lemma (4)

For every s-t cut (X , X̄ ), there exists a feasible solution (u,w)
to the dual with the objective function value being equal to
C(X , X̄ ).

Proof.

Set

ui =

{
0, i ∈ X

1, i ∈ X̄
and wij =

{
1, (i , j) ∈ (X , X̄ ),

0, (i , j) /∈ (X , X̄ ).

We claim that (u,w) is feasible, i.e. it satisfies (10). In fact, we
can check all four possible cases where i and j are either in X
or X̄ . For example, if i ∈ X and j ∈ X̄ , then
ui − uj + wi,j = 0− 1 + 1 = 0. Since ut − us = 1− 0 = 1, the
last constraint is also satisfied. Finally

C(X , X̄ ) =
∑

(i,j)∈(X ,X̄)

cij =
∑

(i,j)∈(X ,X̄)

cijwij =
∑

(i,j)∈E

cijwij .
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Corollary

Given any s-t flow f and any s-t cut (X , X̄ ),

v(f ) ≤ C(X , X̄ ).

Proof.

If (X , X̄ ) is an s-t cut, then there exists a feasible solution to the
dual with the objective function value being equal to C(X , X̄ ).
By the weak duality of LP, we have

C(X , X̄ ) =
∑

(i,j)∈E

cijwij ≥ f (t , s) = v(f ).
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Lemma (5)

For every BFS (u,w) to the dual, there exists an s-t cut (X , X̄ )
such that

C(X , X̄ ) ≤
∑

(i,j)∈E

cijwij . (11)

Proof.

Since det M = det MT and the coefficient matrix A for the
primal is totally unimodular, we see that the coefficient matrix
AT for the dual is also totally unimodular. Hence every BFS to
the dual is integer-valued. In particular, if wij > 0, then wij ≥ 1.
Given an s-t path, if we sum over the dual constraints over the
path, we get

(us − ut ) +
∑

(i,j)∈s-t path

wij ≥ 0.

Since ut − us ≥ 1, we have
∑

(i,j)∈s-t path
wij ≥ 1. By the integral

and non-negativity properties of w, there exists at least one
edge (k , `) in the path such that wk` ≥ 1.
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Proof. (con’t).

Let

X ≡ {s}∪{k | there exists a path from s to k along edges with wij = 0}.

Let X̄ ≡ V \ X . Since there is some wk` ≥ 1 on every s-t path,
t ∈ X̄ . Hence (X , X̄ ) is an s-t cut and wij ≥ 1 if (i , j) ∈ (X , X̄ ).
Thus ∑

(i,j)∈E

cijwij ≥
∑

(i,j)∈(X ,X̄)

cijwij ≥
∑

(i,j)∈(X ,X̄)

cij = C(X , X̄ ).
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Corollary

For an optimal solution (u∗,w∗), there exists an s-t cut that
satisfies

C(X , X̄ ) =
∑

(i,j)∈E

cijw∗ij . (12)

Proof.

Assume that (u∗,w∗) is an optimal basic feasible solution. Let
(X ∗, X̄ ∗) be the s-t cut corresponding to (u∗,w∗), i.e.
C(X ∗, X̄ ∗) ≤

∑
(i,j)∈E cijw∗ij by (11). By Lemma 10, given this

s-t cut, there exists a feasible solution (û, ŵ) to the dual such
that

C(X ∗, X̄ ∗) =
∑

(i,j)∈E

cij ŵij .

Since (u∗,w∗) is optimal, we then have∑
(i,j)∈E

cijw∗ij ≤
∑

(i,j)∈E

cij ŵij = C(X ∗, X̄ ∗) ≤
∑

(i,j)∈E

cijw∗ij

where the last inequality follows from (11). Thus (12) holds.
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Theorem (3)

(Max-flow Min-cut via LP duality)

max
f

v(f ) = min
(X ,X̄)

C(X , X̄ ) .

Proof.

We have by the strong duality theorem,

v∗(f ) = f ∗(t , s) =
∑

(i,j)∈E

cijw∗ij = C∗(X , X̄ ).

Note that the cut (X , X̄ ) has to be minimum. In fact, if there
exists another cut (Y , Ȳ ) such that C(Y , Ȳ ) < C(X , X̄ ), then by
Lemma 10, there exists a feasible solution (ũ, w̃) with∑

(i,j)∈E cij w̃ij = C(Y , Ȳ ) < C(X , X̄ ) =
∑

(i,j)∈E cijw∗ij , a
contradiction to the optimality of (u∗,w∗).
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