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Maximal Flow Problem N probloms
Definition
Let Q be the set of all distinct ordered pairs of elements of a
set V, that is,

Q={(x,%)|xi € V,x €V} Maimat-Hiow
Problems

The pair G = (V, E) with E C Q, is called a directed graph, the Maximal Flow and

Minimal Cut

elements of E are called directed edges. LP Interpretation of

Max-flow Min-cut
Problem

Definition

An incidence matrix can be defined for a directed graph. Let
A=(gj),i=1,---,|V],j=1,---,|E| be the incidence matrix
for a directed graph G(V, E) defined as follows

—1 if ej:(xk,xi),k7éi,
a,-j = 1 if e,- = (X,‘,Xk), k 75 i, (1)
0  otherwise.




Network Flow
Problems

@ The transshipment problem is a special class of network
flow problems. To be more specific, we consider the

problem of shipping a certain homogeneous commaodity Methods or
from a specified origin, called the source, to a particular Problems
destination, called the sink. Maximal Flow and

Minimal Cut

LP Interpretation of

@ The flow network will generally consist of some P Min-eut
intermediate vertex, known as transshipment points,
through which the flows are rerouted.

@ At the transshipment points we impose the condition of
conservation of flow, i.e. what is shipped into it is shipped
out.



Example

Consider a flow network given by the following diagram. Vertex
s is the source and vertex t is the sink. The number ¢; on edge
(/, j) represents the capacity of that edge.

o
v _’ Cs1

C1t
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Let f; be the flow in edge (/, j) and f be the total flow from the
source s to the sink t. The maximal flow problem is to
determine the maximum value of v.

Maximize v

fs1 + st -V = Oa
fit+fia—hy —fs =0, @)
for + bt —flo—fo =0,

vV — f1[ - f2t = 07

subject to

0 < fs1 < Cs1,
0 < fe2 < Ce,
0 < fiz < ¢y,
0 < for < o,
0<fir<ce,
0<fr <o

and

The coefficient matrix on the L.H.S. of equations (2) is simply
the incidence matrix of this directed graph.
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For a general network N = (V, E), constraints (2) and (3)
becomes

v, i=s
Zf’/_Z);’: 0’ i7£sat (4)
jev jev —v, i=t
0<fi<cy Y(je€EE (5)

Any set of numbers {f;} satisfying (4) and (5) is said to be a
feasible flow. The value f is called the value of the flow and is
sometimes denoted by v(f) or simply v.

Mathematically, a flow, or more precisely an s-t flow, f is a
function from E into R™ such that

and

Soofi= > fi, VieV,i#st

{lG.)eE} {lG.)eE}

Network Flow
Problems

Methods for
Maximal-Flow
Problems

Maximal Flow and
Minimal Cut

LP Interpretation of
Max-flow Min-cut
Problem



Network Flow
Problems

For simplicity, given two subsets S and T of V and an s-t flow f
from E into R™, we use (S, T) to denote the set
{(i,j) € Elie S,je T} and

f( Sa T) = E flj Methods for
.. M |-Fl
(iJ)€(S.T) Probioms

Maximal Flow and

If S equals to a singleton set {i}, we write f({i}, T) = f(i, T). In  Mnmarcet
particular, f(i,j) = f;. In this notation, conservation of flows (4)  ermnet

become Problem
v(f), i=s
f(i, V) — f(V, i) = 0, i#s,t (6)
—v(f), i=t

where the value of the flow is given by

v(f) = f(s, V) — f(V,s) = f(V, 1) — £(t, V). (7)



Example

Consider the network below where the numbers on the edges

represent the capacities.
\

4 — 2 E 5 _.4

\\ 1/4%

An s-t flow of value 4 is drawn on the figures where the flow
value is marked by circles. Note that for examples
f(C,V)=1f(V,C)=4and f(D,V)=f(V,D)=0. Also
f(s,V)=4=f(V,t)whereas f(V,s) =f(t,V) =0.
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Methods for Maximal-Flow Problems Novobloms

First-label-first-scan Methods
@ To find a nearest path from a source s to a sink .

@ At each step of the procedure, every vertex i € V is either:

Maximal Flow Problem

i) unlabeled (indicated by blank)
ii) labeled not scanned (indicated by a label £(/)) -

iii) labeled and scanned (¢(/) followed by an x)

Maximal Flow and
Minimal Cut

@ First-label-first-scan Method: Lo retationct

Max-flow Min-cut

(1) Label vertex s by £(s) = s. Problem
(2) If vertex tis labeled, an s-t path is obtained by tracing
backward from t to s using the labels on the vertices;
otherwise go to Step 3.
(3) If all labeled vertices are scanned, there exists no s-t path;
otherwise go to Step 4.
(4) Pick the first labeled but unscanned vertex i, label each
unlabeled vertex j such that (/,) is an edge by ¢(j) = i.
Indicate vertex i as scanned and return to Step 2.

12.10



Example

Consider the network:

/1*—>2*

2*—’3*

l*

An s-tpathis6 < 5+ 3 + 2 « 1.

O
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Network Flow

Flow Augmenting Path Algorithm for Maximal Flow: Problems

Step 1 Find a s-t path with strictly positive flow capacity for each
edge in the path. If no such path exists, we are done.

Step 2 Search this path for the edge with the smallest flow Maximal Flow Problem
capacity, say c¢*, and increase the flow in this path by c*. -

Step 3 Decrease by c* the flow capacity for each edge in this Mimima Gt
path . LP Interpretation of

Max-flow Min-cut
Problem

Step 4 Increase by c* the flow capacity in the opposite direction
for each edge in the path.

Step 5 Go back to Step 1.

12.12



Example

Consider the following network where the numbers on the
edges represent the current flow capacities for the forward and
the backward directions.

~
°1_.31/

Initially the flow v = 0; Augmenting pathis 1 — 2 — 3 — 6 with
cr=1.

[2]s——q[5],
™ 1]

2 \u
DR N Ol
\a g o/
[4t—"[3]

v = 1; Augmenting pathis 1 -+ 2 — 5 — 6 with ¢* = 2.
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31—> 21

o—" 0

37 N E-

\
01—.; D/

v = 3; Augmenting pathis1 -4 -3 — 2 — 5 — 6 with
c* = 1. Notice that edge (3, 2) is a backward edge.

3 00— 30

o— 1

o
“ n\ \ 1@—— 4
‘u_.?o/

v* = 4; there is no more augmenting paths. Thus the maximal

flow f* is given by f(1,2) = 3,f(1,4) = 1,f(2,3) =0,
f(2,5) =3,1(3,6) =1,1(4,3) =1,/(5,6) =3.
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Definition

Let P be an undirected path from s to . An edge (/,j) on P is
said to be a forward edge if it is directed from s to t and
backward edge otherwise. P is said to be a flow augmenting
path with respect to a given flow f if

(1) f(i,j) < cj for each forward edge (i,j) on P, and
(2) f(i,f) > 0 for each backward edge (i,j) on P.

Thus the path1 - 4 — 3 - 2 — 5 — 6 in the last iteration is a

flow augmenting path where 3 — 2 is a backward edge.
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Network Flow

Exercise Problems

Consider the network:

w
(=1=]

(=1=}
B s———E[H]
a

L=]

\_/

Maximal Flow Problem

Maximal Flow and
Minimal Cut

[+]
=
=]

/“‘ \
o o
B et S aat I
SIS

'S

(=]

LP Interpretation of
Max-flow Min-cut
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(=1

VAN
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Network Flow

Maximal Flow and Minimal Cut Problems

Definition
Given a network N = (V, E) with source s and sink f. Let X

and X be two non-empty subsets of V such that X 0 X = ¢ and |
XUX=V.IlfseXandte X, then (X, X)is called an s-t cut | MmFovFreen

(or simply a cut) of the network N. The capacity of a cut (X, X), |  Vaxmairiow

Problems

denoted by C(X, X), is the sum of the capacities of those
edges directed from a vertex in X to a vertex in X, i.e. _

LP Interpretation of
Max-flow Min-cut

C(X’ )_() = Z CI] Problem
(i.)e(X.X)

1217



Example

Consider the following network with capacities listed at the

corner of the vertices:

(X, X)
2|2 ¢[5 (11},{2,3,4,5,6})
. ,/»"l! i 5!!"“\\\4
l ] [6] ({1.2:3.4.5).{6})
4 9
Nl v 7 ({1.2,3).{4.5,6})

({1,3,5},{2,4,6})
({1,2,3,4},{5,6})

Network Flow
Problems

C(X’ X’) Maximal Flow Problem
Meﬂ]ods for
34d=1 ManalFow
LP Interpretation of
2+5=T7 Max-flow Min-cut

Problem

34+54+6+7=21

24+148=11

12.18



Lemma (1)

Let f be an s-t flow and (X, X) an s-t cut, then

v(f) = f(X, X) — f(X, X) = net flow across the s-t cut.

Network Flow
Problems

Proof.
We have by (6) and (7)
v(f) = f(s, V) — f(V, )
=f(s, V)= f(V,8)+ > [f(i, V)= f(V,i)]
ieX,i#s
(Xv V) - f(V7X)

=f
= (X, X) + (X, X) — f(X, X) — f(X, X).

Maximal Flow Problem

Methods for
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Lemma (2)

Given any s-t flow f and s-t cut (X, X), we have
v(f) < C(X, X). In particular, we have

f) < CXX
maxv(f) < min C(X. X).

Network Flow
Problems

Maximal Flow Problem

Methods for
imal-Flow

Proof.
Since f(X, X) < C(X, X) and f(X, X) > 0, we have

v(f) = (X, X) — f(X, X) < C(X, X).

Problems

LP Interpretation of
Max-flow Min-cut
Problem
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Network Flow

Theorem (1) Problems

(Augmentation Algorithm) An s-t flow f is a maximal flow if and
only if it admits no flow augmenting path from s to t.

Proof. Maximal Flow Problem
Methods for

If an augmenting path exists, the current flow is clearly not a (e als
maximal flow.

Now suppose f does not admit an augmenting path from s to t. _
Let X be the set of vertices {/} including s for which there is an | oot
augmenting path from s to i and X be the complementary set Froveem

of vertices, i.e. X = V' \ X.

We claim that for all i € X and j € X, we have f(i,j) = ¢; and
f(j,i) = 0.

For if f(i,j) < c;, obviously we are allowed to flow from j to j,
and hence there will be an augmenting path from s to j. If

f(j, i) > 0, that means we have previously flow from j to i. Now
we can form an augmenting path from s to j by first going to /
and then augmenting that with a backward edge from i to j.
Hence in both cases, we have an augmenting path from s to j,
a contradiction to the fact that j € X. O

12.21



Proof (con’t).

Since (X, X) is an s-t cut, we have by Lemma (1),

v(f)

i.e. fis a maximal flow.

(X, X) — (X, X) =

Z f(i,f) —

iex,jex

D

ieX,jex

C(’v!) =

> 1)

jex,ieX

C(X, X),
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Theorem (2)

(The Max-flow Min-cut Theorem) For any network the maximal
flow value from vertex s to vertex t is equal to the minimal cut
capacity, i.e.
max v(f) = min C(X, X) .
f (X,X)

Network Flow
Problems

Maximal Flow Problem

Methods for

Proof.

A unique minimal cut with respect to the given maximal flow is
constructed in the proof of the Theorem (1). O

v

|-Flow
Problems

LP Interpretation of
Max-flow Min-cut
Problem
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Example

System of Distinct Representative

Five Senators by, bs, b, bs, bs are members of three
committees ay, a» and as. The membership is as follows:

.bl

aye oh

P .i,)3
(130\ —> obhy
N .1)5

(12.

One member from each committee is to be represented in a
super-committee. Is it possible to send one distinct

representative from each of the committees?
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Network Flow

LP Interpretation of Max-flow Min-cut Problem Problems

@ Prove the max-flow min-cut theorem again by using the
duality theorems of LP problems.

@ The LP for maximal flow problem can be stated as:

Maximal Flow Problem

Methods for
Maximal-Flow
Problems

Max v =1(t,s)

Maximal Flow and

Minimal Cut
f(i,V)—£f(V,i)= eV
(P) St (I’ )' . ( ?I) 07 VI .6' K (8)
0 < 1(i,)) < ¢y, v(i,j) € E.
Notice that there are | V|’s conservation constraints and
|E|’s capacity constraints.

12.25



Let us write the cost vector of the primal problem in (9) as

¢’ =(0,...,0,1), the right hand side vector as

b” =(0,...,0|..., Cj, - - -) and the solution vector as
xT=(..., fi, ..., fs). Then we can write the coefficient matrix
of the primal in the form:

(i,7) (¢,s)

< —1
0
incidence matrix .

t +1
0
(i.7) I :
0
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Lemma (3)

The coefficient matrix A of the maximal flow problem is
unimodular.

Proof.

g , where B corresponds to the vertex
constraints and C corresponds to the edge constraints.
Consider any k-by-k submatrices M of A. First we consider
the case where My is a submatrix of B only. Then there are
three cases: (i) all columns of Mk consist of two nonzero
entries, (ii) there is a column of M consisting of all zero
entries, and (iii) there is a column of My consisting of only one
nonzero entries. In case (i), then the two nonzero entries must
be 1 and —1. Hence if we sum all the rows in My, we have a
zero vector. Hence M is singular and therefore detMy = 0. In
case (ii), of course M is singular and therefore again

detMy = 0. In case (iii), then we can expand the determinant at
the only nonzero entry in that column and get

detMy = +detM_1. By repeating the arguments, we see that
the conclusion of the Lemma is valid. J

Partition A =

Network Flow
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Proof. (con’t).

Now suppose My = gﬁ , Where By and Cy are submatrices
of B and C respectively. If any one of the rows of Cx is zero,
then det(Mx) = 0, and we are done. If one of the rows of C is
nonzero, then because of the form of C (which is an identity
matrix plus a zero column), the nonzero row must contain at
most one nonzero entry and the nonzero entry must be 1.
Expanding the determinant of M at that entry and we have
det(My) = det(Mk—_1), where Mj_+ is a square submatrix of M.
Now the proof can be completed by recursion as My _ is just
an (k — 1)-by-(k — 1) submatrix of A. O
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Network Flow

Prime and Dual Problem Problems

Max v=If(ts)

(Prime) St f i, V) - f( V, I) = O, VI S ‘/7 (9) Maximal Flow Problem
|0 < A(i)) < i v(i,j) € E. Mixima P
Problems

Maximal Flow and
Minimal Cut

Min Z CijWii

(i))eE
ui—u+w; >0, (i,j) €E,
U —us > 1,

Dual) subject to . .
( ) ) u; unrestricted, ieV,

12.29



Lemma (4)

For every s-t cut (X, X), there exists a feasible solution (u, w)
to the dual with the objective function value being equal to
C(X, X).

Proof.
Set

0, ieX 17 (I,])E(X,)_(),
ui = . - and Wijj = . =
1 ieX 07 (Iaj)¢(X7X)

We claim that (u, w) is feasible, i.e. it satisfies (10). In fact, we
can check all four possible cases where i and j are either in X
or X. For example, if i € X and j € X, then
Ui—U+w;=0-1+1=0. Since uy —us =1—-0=1, the
last constraint is also satisfied. Finally

CX,.X)= > ci= ) cwi= ) CiW

(i) e(X,X) (i) e(X,X) (i))eE

9
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Corollary

Given any s-t flow f and any s-t cut (X, X),
v(f) < C(X, X).

Proof.

If (X, X) is an s-t cut, then there exists a feasible solution to the
dual with the objective function value being equal to C(X, X).
By the weak duality of LP, we have

CX.X)= Y cyw; > f(t,s) = v(f).
(i.j)eEE
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Lemma (5)

For every BFS (u,w) to the dual, there exists an s-t cut (X, X)

such that
< > gw; (11)
(i,))eE

Proof.

Since det M = det MT and the coefficient matrix A for the
primal is totally unimodular, we see that the coefficient matrix
AT for the dual is also totally unimodular. Hence every BFS to
the dual is integer-valued. In particular, if w; > 0, then wj; > 1.
Given an s-t path, if we sum over the dual constraints over the
path, we get
(Us—u)+ > w=0
(i,j)€s-t path
Since u; — us > 1, we have Y>> w; > 1. By the integral
(i,j)€s-t path
and non-negativity properties of w, there exists at least one
edge (k, ¢) in the path such that wy, > 1.
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Proof. (con’t).
Let

X = {s}U{k | there exists a path from s to k along edges with w;

Let X = V'\ X. Since there is some wy, > 1 on every s-t path,
t € X. Hence (X, X) is an s-t cut and w; > 1 if (i,j) € (X, X).
Thus

Z Cjwjj > Z Cijwjj > Z Cij = C(X, )_()

(i.))eE (i,j)e(X,X) (i,j)e(X,X)
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Corollary
For an optimal solution (u*, w*), there exists an s-t cut that

satisfies
= > cwj. (12)
(i.J)eEE

Proof.

Assume that (u*, w*) is an optimal basic feasible solution. Let
(X*, X*) be the s-t cut corresponding to (u*,w*), i.e.

C(X*, X*) < >_(ijee Ciwj by (11). By Lemma 10, given this
s-t cut, there exists a feaS|bIe solution ({, W) to the dual such

that
CX*, X)) = > cw;.
(i.))€E
Since (u*, w*) is optimal, we then have

Zc,, ch,,w,,_CX*X* Zc,,,]

(i)eE (i.))eE (i,j))eE

where the last inequality follows from (11). Thus (12) holds. O
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Theorem (3)

(Max-flow Min-cut via LP duality)
max v(f) = min C(X, X) .
f (X,X)

Proof.
We have by the strong duality theorem,

v (f) = = > gwj =C'(X,X).
(i)€E

Note that the cut (X, X) has to be minimum. In fact, if there
exists another cut (Y, Y) such that C(Y, Y) < C(X, X), then by
Lemma 10, there exists a feasible solution (i, w) with

Sijee Ciwi = C(Y,Y) < C(X,X) =3 jee CiWj, @
contradiction to the optimality of (u*, w*). O

Network Flow
Problems

Maximal Flow Problem

Methods for
Maximal-Flow
Problems

Maximal Flow and
Minimal Cut

12.35



	Maximal Flow Problem
	Methods for Maximal-Flow Problems
	Maximal Flow and Minimal Cut
	LP Interpretation of Max-flow Min-cut Problem

