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A Simple Problem

Imagine that we have been hired as consultant to a
forgetful traveler who wishes to get from A to line B at
minimum cost.
Our problem is compounded by the fact that if we instruct
the traveler to go diagonally up (or down) he remembers
our advice and does so with probability 3/4; with
probability 1/4 he forgets and does the opposite, taking
the diagonally downward arc.
The objective: minimize the expected cost of the trip.
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What Constitutes A Solution?

Deterministic DP: use DP to determine first the optimal
policy function giving a decision for every vertex, and then
deduced from it the actual optimal sequence of decisions
for initial vertex.

Stochastic DP: a policy and a sequence are quite different
matters.

In conformity with control engineering terminology, we
shall call the solution specified by a sequence of decisions
open-loop control and the solution specified by a policy
feedback control.
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Numerical Solutions of Our Example

The best open-loop control sequence:

Consider all eight possible sequences of three decisions each,
and choose the one with minimum expected cost.

For example, for the decision sequence D − U − D,

EDUD =
27
64
·0+ 9

64
(10+12+1200)+

3
64

(12+10+10)+
1

64
·1210 = 192

1
4

It turns out that the decision sequence U − U − D has the
minimum expected cost, 120 3

16 .
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Numerical Solutions of Our Example

The Optimal feedback control:

Dynamic programming yields the optimal feedback control, as
we shall see below.

the optimal expected value function:

S(x , y) = the expected cost of the remaining process
if we start at vertex (x , y) and use an
optimal feedback control policy.

By the stochastic version of the principle of optimality, we have
S(x , y)

= min
[
U : 3

4{au(x , y) + S(x + 1, y + 1)}+ 1
4{ad (x , y) + S(x + 1, y − 1)}

D : 1
4{au(x , y) + S(x + 1, y + 1)}+ 3

4{ad (x , y) + S(x + 1, y − 1)}

]
.

The boundary condition is

S(3,3) = 0, S(3,1) = 0, S(3,−1) = 0, S(3,−3) = 0.
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Numerical Solutions of Our Example

The Optimal feedback control:

The expected cost using the optimal feedback control policy is
84 1

4 .
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Problems with Time-Lag or Delay
Consider the minimum cost
stochastic path problem shown in
figure, where our decision at stage k
is implemented at stage k + 2, no
matter what the state at stage k + 2.

Decision U results in a diagonally
upward move when it is implemented
two stages later with probability 3

4 and
it results in a downward move two
stages later with probability 1

4 .
Decision D is like the U decision
except the probability 3

4 and 1
4 are

interchanged.

We assume that at (0,0), (1,1), and
(1,−1) the probability of moving
diagonally upward and the probability
of moving diagonally downward each
equal 1

2 .
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Stochastic Time-Lag Model

The optimal expected value function:

S(i , j ,d1,d2) = the minimum expected cost of the remaining
process given that we start at (i , j), d1 was the
decision made at stage i − 1, and d2 was the
decision made at stage i − 2.
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Stochastic Time-Lag Model

By the principle of optimality, writing each of the four possible
sets of previous two decisions separately, we have

S(i , j ,U,U) =
3
4

au(i , j) +
1
4

ad (i , j)

+min
[ 3

4 S(i + 1, j + 1,U,U) + 1
4 S(i + 1, j − 1,U,U)

3
4 S(i + 1, j + 1,D,U) + 1

4 S(i + 1, j − 1,D,U)

]
S(i , j ,U,D) =

1
4

au(i , j) +
3
4

ad (i , j)

+min
[ 1

4 S(i + 1, j + 1,U,U) + 3
4 S(i + 1, j − 1,U,U)

1
4 S(i + 1, j + 1,D,U) + 3

4 S(i + 1, j − 1,D,U)

]
S(i , j ,D,U) =

3
4

au(i , j) +
1
4

ad (i , j)

+min
[ 3

4 S(i + 1, j + 1,U,D) + 1
4 S(i + 1, j − 1,U,D)

3
4 S(i + 1, j + 1,D,D) + 1

4 S(i + 1, j − 1,D,D)

]
S(i , j ,D,D) =

1
4

au(i , j) +
3
4

ad (i , j)

+min
[ 1

4 S(i + 1, j + 1,U,D) + 3
4 S(i + 1, j − 1,U,D)

1
4 S(i + 1, j + 1,D,D) + 3

4 S(i + 1, j − 1,D,D)

]
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Stochastic Time-Lag Model

For processes starting at stage 0 or 1, upward and downward
transitions each occur with probability 1

2 , so

S(1, j ,U,_) =
1
2

au(1, j) +
1
2

ad (1, j)

+min
[ 1

2 S(2, j + 1,U,U) + 1
2 S(2, j − 1,U,U)

1
2 S(2, j + 1,D,U) + 1

2 S(2, j − 1,D,U)

]
S(1, j ,D,_) =

1
2

au(1, j) +
1
2

ad (1, j)

+min
[ 1

2 S(2, j + 1,U,D) + 1
2 S(2, j − 1,U,D)

1
2 S(2, j + 1,D,D) + 1

2 S(2, j − 1,D,D)

]
S(0,0,_,_) =

1
2

au(0,0) +
1
2

ad (0,0)

+min
[ 1

2 S(1,1,U,_) + 1
2 S(1,−1,U,_)

1
2 S(1,1,D,_) + 1

2 S(1,−1,D,_)

]
The boundary condition, assuming the process ends when
i = 4, is most easily written as

S(4, j ,d1,d2) = 0 for all j , d1 and d2.
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Stochastic Time-Lag Model

In this case, the value of S will be computed at stage 3 for
various decisions at stage 2 where these decisions are
irrelevant and not really made, but the answer will be correct.
More complicated to write, but easier to use for hand
computation, are formulas for S at stage 2 of the form

S(2, j ,U,U) = 9
16 [au(2, j) + au(3, j + 1)] + 3

16 [au(2, j) + ad (3, j + 1)]

+ 3
16 [ad (2, j) + au(3, j − 1)] + 1

16 [ad (2, j) + ad (3, j − 1)]
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Exercise

Determine the feedback policy
that minimizes the expected
cost of going from A to line B in
the network in the figure where
the cost of a path is the sum of
its arc numbers plus 1 for each
change in direction, and where
at each vertex there are two
admissible decisions. Decision
U diagonally up with probability
2
3 and down with probability 1

3
and decision D goes up with
probability 1

3 and down with
probability 2

3 .
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Stochastic Equipment Replacement Problem

Consider a stochastic version of the equipment
replacement problem, where we either keep or replace our
current machine at the start of each year i , i = 1,2, · · · ,N.

We assume that the operating cost is a random variable,
dependent upon the age of the machine.

We further assume that our machine may suffer a
catastrophic failure at the end of any year, and then it must
be replaced by a new machine.



Stochastic DP
Problems

A simple problem

Problems with
Time-Lag or Delay

Stochastic Equipment
Replacement Problem

10.15

The data defining our problem are

N = the duration of the process,
y = the age of the machine with which we start year 1,

n(i , j) = the probability that the net operating cost during the
year is j , j = 0,1, · · · , J, given that the machine is
of age i at the start of the year,

p = the purchase price of new machine,
t(i) = the trade-in value of a machine, in working order, just

turned age i ,
u(i) = the trade-in value of a machine, in failed condition, just

turned age i ,
q(i) = the probability that a machine, in working order, of age i

at the start of a year fails at the end of the year,
s(i) = the salvage value at the start of year N + 1 of a working

machine just turned age i ,
v(i) = the salvage value at the start of year N + 1 of a failed

machine just turned age i .
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Stochastic Equipment Replacement Model

To formulate the problem of minimizing the expected cost for
the above situation, we define

S(i , k) = the minimum expected cost of the remaining process
if we start year k with a machine, in working
order of age i .

Then for k = 1, · · · ,N − 1; i = 1, · · · , k − 1 and i = y + k − 1:

S(i , k) = Min


B : p − t(i) +

J∑
j=0

jn(0, j) + q(0){p − u(1) + S(0, k + 1)}

+{1− q(0)}S(1, k + 1)

K :
J∑

j=0
jn(i , j) + q(i){p − u(i + 1) + S(0, k + 1)}

+{1− q(i)}S(i + 1, k + 1)


and

P(i , k) =
{

B if B ≤ K ,
K if B > K .
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Stochastic Equipment Replacement Model

For i = 0,

S(0, k) =
J∑

j=0

jn(0, j)+q(0){p−u(1)+S(0, k+1)}+{1−q(0)}S(1, k+1);

and the boundary condition is

S(i ,N) = Min


B : p − t(i) +

J∑
j=0

jn(0, j)− q(0)v(1)− {1− q(0)}s(1)

K :
J∑

j=0
jn(i , j)− q(i)v(i + 1)− {1− q(i)}s(i + 1)

 .
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