
1 Convex Sets, and Convex Functions

In this section, we introduce one of the most important ideas in the theory of optimization,

that of a convex set. We discuss other ideas which stem from the basic definition, and

in particular, the notion of a convex function which will be important, for example, in

describing appropriate constraint sets.

1.1 Convex Sets

Intuitively, if we think of R
2 or R

3, a convex set of vectors is a set that contains all the

points of any line segment joining two points of the set (see the next figure).

P

Q

Figure 1: A Convex Set

P Q

Figure 2: A Non-convex

Set

To be more precise, we introduce some definitions. Here, and in the following, V will

always stand for a real vector space.

Definition 1.1 Let u, v ∈ V . Then the set of all convex combinations of u and v is

the set of points

{wλ ∈ V : wλ = (1 − λ)u+ λv, 0 ≤ λ ≤ 1}. (1.1)
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In, say, R
2, this set is exactly the line segment joining the two points u and v. (See the

examples below.)

Next, is the notion of a convex set.

Definition 1.2 Let K ⊂ V . Then the set K is said to be convex provided that given

two points u, v ∈ K the set (1.1) is a subset of K.

We give some simple examples:

Examples 1.3

(a) An interval of [a, b] ⊂ R is a convex set. To see this, let c, d ∈ [a, b] and assume,

without loss of generality, that c < d. Let λ ∈ (0, 1). Then,

a ≤ c = (1 − λ)c+ λc < (1 − λ)c+ λd

< (1 − λ)d+ λd = d

≤ b.

(b) A disk with center (0, 0) and radius c is a convex subset of R
2. This may be easily

checked by using the usual distance formula in R
2 namely ‖x−y‖ :=

√

(x1 − y1)2 + (x2 − y2)2

and the triangle inequality ‖u+ v‖ ≤ ‖u‖ + ‖v‖. (Exercise!)

(c) In R
n the set H := {x ∈ R

n : a1x1 + . . . + anxn = c} is a convex set. For any

particular choice of constants ai it is a hyperplane in R
n. Its defining equation

is a generalization of the usual equation of a plane in R
3, namely the equation

ax + by + cz + d = 0.

To see that H is a convex set, let x(1), x(2) ∈ H and define z ∈ R
3 by z := (1 −

λ)x(1) + λx(2). Then

z =
n
∑

i=1

ai[(1 − λ)x
(1)
i + λx

(2)
i ] =

n
∑

i=1

(1 − λ)aix
(1)
i + λaix

(2)
i

= (1 − λ)
n
∑

i=1

aix
(1)
i + λ

n
∑

i=1

aix
(2)
i = (1 − λ)c+ λc

= c.

Hence z ∈ H.
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(d) As a generalization of the preceeding example, let A be an m× n matrix, b ∈ R
m,

and let S := {(x ∈ R
n : Ax = b}. (The set S is just the set of all solutions of

the linear equation Ax = b.) Then the set S is a convex subset of R
n. Indeed, let

x(1), x(2) ∈ S. Then

A
(

(1 − λ)x(1) + λx(2)
)

= (1 − λ)A
(

x(1)
)

+ λA
(

x(2)
)

= (1 − λ)b+ λb = b.

Note: In (c) above, we can take A = (a1, a2, . . . , an) so that with this choice, the

present example is certainly a generalization.

We start by checking some simple properties of convex sets.

A first remark is that R
n is, itself, obviously convex. Moreover, the unit ball in R

n,

namely B1 := {x ∈ R
n | ‖x‖ ≤ 1} is likewise convex. This fact follows immediately from

the triangle inequality for the norm. Specifically, we have, for arbitrary x, y ∈ B1 and

λ ∈ [0, 1]

‖(1 − λ) x+ λ y‖ ≤ (1 − λ) ‖x‖ + λ ‖y‖ ≤ (1 − λ) + λ = 1 .

The ball B1 is a closed set. It is easy to see that, if we take its interior

◦

B:= {x ∈ R
n | ‖x‖ < 1} ,

then this set is also convex. This gives us a hint regarding our next result.

Proposition 1.4 If C ⊂ R
n is convex, the c`(C), the closure of C, is also convex.

Proof: Suppose x, y ∈ c`(C). Then there exist sequences {xn}
∞
n=1 and {yn}

∞
n=1 in C such

that xn → x and yn → y as n→ ∞. For some λ, 0 ≤ λ ≤ 1, define zn := (1−λ) xn +λ yn.

Then, by convexity of C , zn ∈ C. Moreover zn → (1 − λ) x + λ y as n → ∞. Hence this

latter point lies in c`(C). 2

The simple example of the two intervals [0, 1] and [2, 3] on the real line shows that the

union of two sets is not necessarily convex. On the other hand, we have the result:

Proposition 1.5 The intersection of any number of convex sets is convex.
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Proof: Let {Kα}α∈A be a family of convex sets, and let K := ∩α∈AKα. Then, for any

x, y ∈ K by definition of the intersection of a family of sets, x, y ∈ Kα for all α ∈ A and

each of these sets is convex. Hence for any α ∈ A, and λ ∈ [0, 1], (1 − λ)x + λy ∈ Kα.

Hence (1 − λ)x + λy ∈ K. 2

Relative to the vector space operations, we have the following result:

Proposition 1.6 Let C,C1, and C2 be convex sets in R
n and let β ∈ R then

(a) β C := {z ∈ R
n | z = βx, x ∈ C} is convex.

(b) C1 + C2 := {z ∈ R
n | z = x1 + x2, x1 ∈ C1, x2 ∈ C2} is convex.

Proof: We leave part (a) to the reader. To check that part (b) is true, let z1, z2 ∈ C1 +C2

and take 0 ≤ λ ≤ 1. We take z1 = x1 + x2 with x1 ∈ C1, x2 ∈ C2 and likewise decompose

z2 = y1 + y2. Then

(1 − λ) z1 + λ z2 = (1 − λ) [x1 + x2] + λ [y1 + y2]

= [(1 − λ) x1 + λ y1] + [(1 − λ) x2 + λ y2] ∈ C1 + C2 ,

since the sets C1 and C2 are convex. 2

We recall that, if A and B are two non-empty sets, then the Cartesian product of these

two sets A× B is defined as the set of ordered pairs {(a, b) : a ∈ A, b ∈ B}. Notice that

order does matter here and that A× B 6= B × A! Simple examples are

1. Let A = [−1, 1], B = [−1, 1] so that A × B = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}

which is just the square centered at the origin, of side two.

2. R
2 itself can be identified (and we usually do!) with the Cartesian product R × R.

3. let C ⊂ R
2 be convex and let S := R

+ ×C. Then S is called a right cylinder and is

just {(z, x) ∈ R
3 : z > 0, x ∈ C}. If, in particular C = {(u, v) ∈ R

2 : u2 + v2 ≤ 1},

then S is the usual right circulinder lying above the x, y-plane (without the bottom!).

This last example shows us a situation where A × B is convex. In fact it it a general

result that if A and B are two non-empty convex sets in a vector space V , then A×B is

likewise a convex set in V × V .

Exercise 1.7 Prove this last statement.
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While, by definition, a set is convex provided all convex combinations of two points in the

set is again in the set, it is a simple matter to check that we can extend this statement to

include convex combinations of more than two points. Notice the way in which the proof

is constructed; it is often very useful in computations!

Proposition 1.8 Let K be a convex set and let λ1, λ2, . . . , λp ≥ 0 and

p
∑

i=1

λi = 1. If

x1, x2, . . . xp ∈ K then

p
∑

i=1

λi xi ∈ K. (1.2)

Proof: We prove the result by induction. Since K is convex, the result is true, trivially,

for p = 1 and by definition for p = 2. Suppose that the proposition is true for p = r

(induction hypothesis!) and consider the convex combination λ1x1 +λ2x2 + . . .+λr+1xr+1.

Define Λ :=
r
∑

i=1

λi. Then since 1 − Λ =
r+1
∑

i=1

λi −
r
∑

i=1

λi = λr+1, we have

(

r
∑

i=1

λi xi

)

+ λr+1 xr+1 = Λ

(

r
∑

i=1

λi

Λ
xi

)

+ (1 − Λ) xr+1.

Note that
∑r

i=1

(

λi

Λ

)

= 1 and so, by the induction hypothesis,
∑r

i=1

(

λi

Λ

)

xi ∈ K. Since

xr+1 ∈ K it follows that the right hand side is a convex combination of two points of K

and hence lies in K 2

Remark: We will also refer to combinations of the form (1.2) as convex combinations

of the p points x1, x2, . . . , xp.

For any given set which is not convex, we often want to find a set which is convex and

which contains the set. Since the entire vector space V is obviously a convex set, there is

always at least one such convex set containing the given one. In fact, there are infinitely

many such sets. We can make a more economical choice if we recall that the intersection

of any number of convex sets is convex.

Intuitively, given a set C ⊂ V , the intersection of all convex sets containing C is the

“smallest” subset containing C. We make this into a definition.

Definition 1.9 The convex hull of a set C is the intersection of all convex sets which

contain the set C. We denote the convex hull by co (C).
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Figure 3: The Formation of a Convex Hull

We illustrate this definition in the next figure where the dotted line together with the

original boundaries of the set for the boundary of the convex hull.

Examples 1.10

(a) Suppose that [a, b] and [c, d] are two intervals of the real line with b < c so that the

intervals are disjoint. Then the convex hull of the set [a, b]∪ [c, d] is just the interval

[a, d].

(b) In R
2 consider the elliptical annular region E consisting of the disk {(x, y) ∈ R

2 :

x2 +y2 ≤ R for a given positive number R without the interior points of an elliptical

region as indicated in the next figure.

Clearly the set E is not convex for the line segment joining the indicated points P

and Q has points lying in the “hole” of region and hence not in E . Indeed, this is the

case for any line segment joining two points of the region which are, say, symmetric

with respect to the origin. The entire disk of radius R, however, is convex and

indeed is the convex hull, co (E).

These examples are typical. In each case, we see that the convex hull is obtained by

adjoining all convex combinations of points in the original set. This is indeed a general

result.
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P

Q

Figure 4: The Elliptically Annular Region

Theorem 1.11 Let S ⊂ V . Then the set of all convex combinations of points of the set

S is exactly co (S).

Proof: Let us denote the set of all convex combinations of p points of S by Cp(S). Then

the set of all possible convex combinations of points of S is C(S) := ∪∞
p=1Cp(S). If

x ∈ C(S) then it is a convex combination of points of S. Since S ⊂ co(S) which is

convex, it is clear from Proposition 1.8 that x ∈ co(S) and, hence C(S) ⊂ co (S). To see

that the opposite inclusion holds, it is sufficient to show that C(S) is a convex set. Then,

since co(S) is, by definition, the smallest convex set containing the points of S it follows

that co(S) ⊂ C(S).

Now to see that C(S) is indeed convex, let x, y ∈ C(S). Then for some positive integers

p and q, and p− and q-tuples {µi}
p
i=1, {νj}

q
j=1 with

∑p

1 µi = 1 and
∑q

1 νj = 1, and points

{x1, x2, . . . , xp} ⊂ S and {y1, y2, . . . , yq} ⊂ S, we have

x =

p
∑

i=1

µi xi , and y =

q
∑

j=1

νj yj .

Now, let λ be such that 0 ≤ λ ≤ 1 and look at the convex combination (1 − λ)x + λy.

From the representations we have
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(1 − λ) x+ λ y = (1 − λ)

(

p
∑

i=1

µi xi

)

+ λ

(

q
∑

j=1

νj yj

)

=

p
∑

i=1

(1 − λ)µi xi +

q
∑

j=1

λ νj yj

But we have now, a combination of p+q points of S whose coefficients are all non-negative

and, moreover, for which

p
∑

i=1

(1 − λ)µi +

q
∑

j=1

λ νj = (1 − λ)

p
∑

i=1

µi + λ

q
∑

j=1

νj = (1 − λ) · 1 + λ · 1 = 1 ,

which shows that the convex combination (1 − λ)x + λy ∈ C(S). Hence this latter set is

convex. 2

Convex sets in R
n have a very nice characterization discovered by Carathèodory.

Theorem 1.12 Let S be a subset of R
n. Then every element of co (S) can be represented

as a convex combination of no more than (n+ 1) elements of S.

Proof: Let x ∈ co (S). Then we can represent x as

m
∑

i=1

αix
(i) for some vectors x(i) ∈ S

and scalars αi ≥ 0 with

m
∑

i=1

αi = 1. Let us suppose that m is the minimal number

of vectors for which such a representation of x is possible. In particular, this means

that for all i = 1, . . . , m, αi > 0. If we were to have m > n + 1, then the vectors

x(i) − x, i = 1, 2, . . . , m must be linearly dependent since there are more vectors in this

set than the dimension of the space. It follows that there exist scalars λ2, . . . , λm, at least

one of which is positive (why?) such that

m
∑

i=2

λi (x
(i) − x) = 0 .

Let µ1 := −
∑m

i=2 λi , and µi := λi , i = 2, 3, . . . , m. Then

m
∑

i=1

µi xi = 0 , and
m
∑

i=1

µi = 0 ,
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while at least one of the scalars µ2, µ3, . . . , µm is positive.

The strategy for completing the proof is to produce a convex combination of vectors that

represents x and which has fewer than m summands which would then contradict our

choice of m as the minimal number of non-zero elements in the representation. To this

end, α̂i := αi − γ̂µi , i = 1, . . . , m, where γ̂ > 0 is the largest γ such that αi − γ µi ≥ 0 for

all i. Then, since
∑m

i=1 µixi = 0 we have

m
∑

i=1

α̂i xi =

m
∑

i=1

(αi − γ̂ µi) xi

=
m
∑

i=1

αi xi − γ̂
m
∑

i=1

µi xi =
m
∑

i=1

αi xi = x ,

the last equality coming from our original representation of x. Now, the α̂i ≥ 0, at least

one is zero, and

m
∑

i=1

α̂i =

m
∑

i=1

αi − γ̂

m
∑

i=1

µi =

m
∑

i=1

αi = 1 ,

the last equality coming from the choice of αi. Since at least one of the α̂i is zero, this

gives a convex representation of x in terms of fewer than m points in S which contradicts

the assumption of minimality of m. 2

Carathéodory’s Theorem has the nature of a representation theorem somewhat analo-

gous to the theorem which says that any vector in a vector space can be represented as

a linear combination of the elements of a basis. One thing both theorems do, is to give

a finite and minimal representation of all elements of an infinite set. The drawback of

Carathéodory’s Theorem, unlike the latter representation, is that the choice of elements

used to represent the point is neither uniquely determined for that point, nor does the

theorem guarantee that the same set of vectors in C can be used to represent all vec-

tors in C; the representing vectors will usually change with the point being represented.

Nevertheless, the theorem is useful in a number of ways a we will see presently. First, a

couple of examples.

Examples 1.13

(a) In R, consider the interval [0, 1] and the subinterval

(

1

4
,
3

4

)

. Then co

(

1

4
,
3

4

)

=
(

1

4
,
3

4

)

. If we take the point x =
1

2
, then we have both
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x =
1

2

(

3

8

)

+
1

2

(

5

8

)

and x =
3

4

(

7

16

)

+
1

4

(

11

16

)

.

So that certainly there is no uniqueness in the representation of x =
1

2
.

(b) In R
2 we consider the two triangular regions, T1, T2, joining the points (0, 0), (1, 4), (2, 0), (3, 4)

and (4, 0) as pictured in the next figures. The second of the figures indicates that

joining the apexes of the triangles forms a trapezoid which is a convex set. It is the

convex hull of the set T1 ∪ T2.

0

1

2

3

4

1 2 3 4

Figure 5: The Triangles T1 and

T2

0

1

2

3

4

1 2 3 4

Figure 6: The Convex Hull of

T1 ∪ T2

Again, it is clear that two points which both lie in one of the original triangles have

more than one representation. Similarly, if we choose two points, one from T1 and

one from T2, say the points (1, 2) and (3, 2), the point

1

2









1

2



+





3

2







 =





2

2





does not lie in the original set T1 ∪ T2, but does lie in the convex hull. Moreover,

this point can also be represented by
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1

2







3
2

2






+

2

2







5
2

2







as can easily be checked.

The next results depend on the notion of norm in R
n and on the convergence of a sequence

of points in R
n. In particular, it relies on the fact that, in R

n, or for that matter in any

complete metric space, Cauchy sequences converge.

Recall that a set of points in R
n is called compact provided it is closed and bounded. One

way to characterize such a set in R
n is that if C ⊂ R

n is compact, then, given any sequence

{x(1), x(2), . . . , x(n), . . .} ⊂ C there is a subsequence which converges, lim
k→∞

x(nk) = xo ∈ C.

As a corollary to Carathèodory’s Theorem, we have the next result about compact sets:

Corollary 1.14 The convex hull of a compact set in R
n is compact.

Proof: Let C ⊂ R
n be compact. Notice that the simplex

σ :=

{

(λ1, λ2, . . . , λn) ∈ R
n :

n
∑

i=1

λi = 1

}

is also closed and bounded and is therefore compact. (Check!) Now suppose that

{v(j)}∞j=1 ⊂ co (C). By Carathèodory’s Theorem, each v(j) can be written in the form

v(k) =

n+1
∑

i=1

λk,ix
(k,i), where λk,i ≥ 0,

n+1
∑

i=1

λk,i = 1, and x(k,i) ∈ C.

Then, since C and σ are compact, there exists a sequence k1, k2, . . . such that the limits

lim
j→∞

λkj ,i = λi and lim
j→∞

x(kj ,i) = x(i) exist for i = 1, 2, . . . , n+1. Clearly λi ≥ 0,
n+1
∑

i=1

λi = 1

and xi ∈ C.

Thus, the sequence {v(k)}∞k=1 has a subsequence, {v(kj)}∞j=1 which converges to a point of

co (C) which shows that this latter set is compact. 2

The next result shows that if C is closed and convex (but perhaps not bounded) is has

a smallest element in a certain sense. It is a simple result from analysis that involves

the fact that the function x → ‖x‖ is a continuous map from R
n → R and the fact that

Cauchy sequences in R
n converge.
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Before proving the result, however, we recall that the norm in R
n satisfies what is known

as the parallelogram law, namely that for any x, y ∈ R
n we have

‖x + y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 .

This identity is easily proven by expanding the terms on the left in terms of the inner

product rules. It is left as an exercise.

Theorem 1.15 Every closed convex subset of R
n has a unique element of minimum

norm.

Proof:

Let K be such a set and note that ι := inf
x∈K

‖x‖ ≥ 0 so that the function x → ‖x‖

is bounded below on K. Let x(1), x(2), . . . be a sequence of points of K such that

lim
i→∞

‖x(i)‖ = ι. 1 Then, by the parallelogram law, ‖x(i) − x(j)‖2 = 2 ‖x(i)‖2 + 2 ‖x(j)‖2 −

4 ‖
1

2

(

x(i) + x(j)
)

‖2. Since K is convex,
1

2

(

x(i) + x(j)
)

∈ K so that ‖
1

2

(

x(i) + x(j)
)

‖ ≥ ι.

Hence

‖x(i) − x(j)‖2 ≤ 2 ‖x(i)‖2 + 2 ‖x(j)‖2 − 4 ι2.

As i, j → ∞, we have 2 ‖x(i)‖2 +2 ‖x(j)‖2 − 4 ι→ 0. Thus, {x(j)}∞j=1 is a Cauchy sequence

and has a limit point x. Since K is closed, x ∈ K. Moreover, since the function x→ ‖x‖

is a continuous function from R
n → R,

ι = lim
j→∞

‖x(j)‖ = ‖x‖.

In order to show uniqueness of the point with minimal norm, suppose that there were two

points, x, y ∈ K, x 6= y such that ‖x‖ = ‖y‖ = ι. Then by the parallelogram law,

0 < ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 − 4 ‖
1

2
(x + y) ‖2

= 2 ι2 + 2 ι2 − 4 ‖
1

2
(x+ y) ‖2

so that 4 ι2 > 4 ‖
1

2
(x + y) ‖2 or ‖

1

2
(x+ y) ‖ < ι which would give a vector in K of norm

less than the infimum ι. 2

1Here, and throughout this course, we shall call such a sequence a minimizing sequence.
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Example 1.16 It is easy to illustrate the statement of this last theorem in a concrete

case. Suppose that we define three sets in R
2 by H+

1 := {(x, y) ∈ R
2 : 5x−y ≥ 1}, H+

2 :=

{(x, y) ∈ R
2 : 2x + 4y ≥ 7} and H−

3 := {(x, y) ∈ R
2 : 2x + 2y ≤ 6} whose intersection

(the intersection of half-spaces) forms a convex set illustrated below. The point of minimal

norm is the closest point in this set to the origin. From the projection theorem in R
2,

that point is determined by the intersection of the boundary line 2x + 4y = 7 with a line

perpendicular to it and which passes through the origin as illustrated here.
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Figure 7: The Convex Set
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Figure 8: The Point of Minimal

Norm

1.2 Separation Properties

There are a number of results which are of crucial importance in the theory of convex

sets, and in the theory of mathematical optimization, particularly with regard to the

development of necessary conditions, as for example in the theory of Lagrange multipliers.

These results are usually lumped together under the rubric of separation theorems. We

discuss two of these results which will be useful to us. We will confine our attention to

the finite dimensional case.2

2In a general inner product space or in Hilbert space the basic theorem is called the Hahn-Banach

theorem and is one of the central results of functional analysis.
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The idea goes back to the idea of describing a circle in the plane by the set of all tangent

lines to points on the boundary of the circle.

Figure 9: The Circle with Supporting Hyperplanes

Our proof of the Separation Theorem (and its corollaries) depends on the idea of the

projection of a point onto a convex set. We begin by proving that result.

The statement of the Projection Theorem is as follows:

Theorem 1.17 Let C ⊂ R
n be a closed, convex set. Then

(a) For every x ∈ R
n there exists a unique vector z? ∈ C that minimizes ‖z − x‖ over

all z ∈ C. We call z? the projection of x onto C.

(b) z? is the projection of x onto C if and only if

〈y − z?, x− z?〉 ≤ 0, for all y ∈ C .

Proof: Fix x ∈ R
n and let w ∈ C. Then minimizing ‖x− z‖ over all z ∈ C is equivalent

to minimizing the same function over the set {z ∈ C : ‖x− z‖ ≤ ‖x− w‖}. This latter

set is both closed and bounded and therefore the continuous function g(z) := ‖z − x‖,

according to the theorem of Weierstrass, takes on its minimum at some point of the set.

We use the paralellogram identity to prove uniqueness as follows. Suppose that there are

two distinct points, z1 and z2, which both minimize ‖z−x‖ and denote this minimum by

ι. Then we have

14



0 < ‖(z1 − x) − (z2 − x)‖2 = 2 ‖z1 − x‖2 + 2 ‖z2 − x‖2 − 4

∥

∥

∥

∥

1

2
[(z1 − x) + (z2 − x)]

∥

∥

∥

∥

2

= 2 ‖z1 − x‖2 + 2 ‖z2 − x‖2 − 4

∥

∥

∥

∥

z1 + z2
2

− x

∥

∥

∥

∥

2

= 2 ι2 + 2 ι2 − 4 ‖ẑ − x‖2 ,

where ẑ = (z1 + z2)/2 ∈ C since C is convex. Rearranging, and taking square roots, we

have

‖ẑ − x‖ < ι

which is a contradiction of the fact that z1 and z2 give minimal values to the distance.

Thus uniqueness is established.

To prove the inequality in part (b), and using 〈·, ·〉 for the inner product, we have, for all

y, z ∈ C, the inequality

‖y − x‖2 = ‖y − z‖2 + ‖z − x‖2 − 2 〈(y − z), (x− z)〉

≥ ‖z − x‖2 − 2 〈(y − z), (x− z)〉 .

Hence, if z is such that 〈(y − z), (x− z)〉 ≤ 0 for all y ∈ C, then ‖y − x‖2 ≥ ‖z − x‖2 for

all y ∈ C and so, by definition z = z?.

To prove the necessity of the condition, let z? be the projection of x onto C and let y ∈ C

be arbitrary. For α > 0 define yα = (1 − α)z? + αy then

‖x− yα‖
2 = ‖(1 − α)(x− z?) + α(x− y)‖2

= (1 − α)2‖x− z?‖2 + α2‖x− y‖2 + 2 (1 − α)α 〈(x− z?), (x− y)〉 .

Now consider the function ϕ(α) := ‖x− yα‖
2. Then we have from the preceeding result

∂ϕ

∂α

∣

∣

∣

∣

α=0

= −2 ‖x− z?‖2 + 2 〈(x− z?), (x− y)〉 = −2 〈(y − z?), (x− z?)〉 .

Therefore, if 〈(y − z?), (x− z?)〉 > 0 for some y ∈ C, then

∂

∂α

{

‖x− yα‖
2
}

∣

∣

∣

∣

α=0

< 0
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and, for positive but small enough α, we have ‖x− yα‖ < ‖x− z?‖. This contradicts the

fact that z? is the projection of x onto C and shows that 〈(y − z?), (x − z?)〉 ≤ 0 for all

y ∈ C. 2

In order to study the separation properties of convex sets we need the notion of a hyper-

plane.

Definition 1.18 Let a ∈ R
n and b ∈ R and assume a 6= 0. Then the set

H := {x ∈ R
n | 〈a, x〉 = b} ,

is called a hyperplane with normal vector a.

We note, in passing, that hyperplanes are convex sets, a fact that follows from the bilin-

earity of the inner product. Indeed, if x, y ∈ H and 0 ≤ λ ≤ 1 we have

〈a, (1 − λ) x+ λ y〉 = (1 − λ) 〈a, x〉 + λ 〈a, y〉 = (1 − λ) b+ λ b = b .

Each such hyperplane defines the half-spaces

H+ := {x ∈ R
n | 〈a, x〉 ≥ b} , and H− := {x ∈ R

n | 〈a, x〉 ≤ b} .

Note that H+ ∩H− = H. These two half-spaces are closed sets, that is, they contain all

their limit points. Their interiors 3 are given by

◦

H
+

= {x ∈ R
n | 〈a, x〉 > b} , and

◦

H
−

:= {x ∈ R
n | 〈a, x〉 < b} .

Whether closed or open, these half-spaces are said to be generated by the hyperplane H.

Each is a convex set.

Of critical importance to optimization problems is a group of results called separation

theorems.

Definition 1.19 Let S, T ⊂ R
n and let H be a hyperplane. Then H is said to separate

S from T if S lies in one closed half-space determined by H while T lies in the other

closed half-space. In this case H is called a separating hyperplane. If S and T lie in

the open half-spaces, then H is said to strictly separate S and T .

3Recall that a point xo is an interior point of a set S ⊂ R
n provided there is a ball with center xo of

sufficiently small radius, which contains only points of S. The interior of a set consists of all the interior

points (if any) of that set.
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We can prove the Basic Separation Theorem in R
n using the result concerning the pro-

jection of a point on a convex set. The second of our two theorems, the Basic Support

Theorem is a corollary of the first.

Theorem 1.20 Let C ⊂ R
n be convex and suppose that y 6∈ c`(C). Then there exist an

a ∈ R
n and a number γ ∈ R such that 〈a, x〉 > γ for all x ∈ C and 〈a, y〉 ≤ γ.

Proof: Let ĉ be the projection of y on c`(C), and let γ = infx∈C ‖x− y‖, i.e., γ is the

distance from y to its projection ĉ. Note that since y 6∈ c`(C), γ > 0.

Now, choose an arbitrary x ∈ C and λ ∈ (0, 1) and form xλ := (1−λ)ĉ+λx. Since x ∈ C

and ĉ ∈ c`(C), xλ ∈ c`(C). So we have

‖xλ − y‖2 = ‖(1 − λ)ĉ+ λx− y‖2 = ‖ĉ+ λ(x− ĉ) − y‖2

≥ ‖ĉ− y‖2 > 0.

But we can write ‖ĉ + λ(x − ĉ) − y‖2 = ‖(ĉ − y) + λ(x − ĉ)‖2 and we can expand this

latter expression using the rules of inner products.

0 < ‖ĉ− y‖2 ≤ ‖(ĉ− y) + λ(x− ĉ)‖2 = 〈(ĉ− y) + λ(x− ĉ), (ĉ− y) + λ(x− ĉ)〉

= 〈ĉ− y, ĉ− y〉 + 〈ĉ− x, λ(x− ĉ)〉 + 〈λ(x− ĉ), ĉ− y〉 + 〈λ(x− ĉ), λ(x− ĉ)〉,

and from this inequality, we deduce that

2λ〈ĉ− y, x− ĉ〉 + λ2〈x− ĉ, x− ĉ〉 ≥ 0.

From this last inequality, dividing both sides by 2λ and taking a limit as λ → 0+, we

obtain

〈ĉ− y, x− ĉ〉 ≥ 0.

Again, we can expand the last expression 〈ĉ − y, x − ĉ〉 = 〈ĉ − y, x〉 + 〈ĉ − y,−ĉ〉 ≥ 0.

By adding and subracting y and recalling that ‖ĉ − y‖ > 0, we can make the following

estimate,

〈ĉ− y, x〉 ≥ 〈ĉ− y, ĉ〉 = 〈ĉ− y, y − y + ĉ〉

= 〈ĉ− y, y〉+ 〈ĉ− y, ĉ− y〉 = 〈ĉ− y, y〉+ ‖ĉ− y‖2 > 〈ĉ− y, y〉.
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In summary, we have 〈ĉ− y, x〉 > 〈ĉ− y, y〉 for all x ∈ C. Finally, define a := ĉ− y. Then

this last inequality reads

〈a, x〉 > 〈a, y〉 for all x ∈ C.

2

Before proving the Basic Support Theorem, let us recall some terminology. Suppose that

S ⊂ R
n. Then a point s ∈ S is called a boundary point of S provided that every ball

with s as center intersects both S and its complement R
n \S := {x ∈ R

n : x 6∈ S}. Note

that every boundary point is a limit point of the set S, but that the converse is not true.

Moreover, we introduce the following definition:

Definition 1.21 A hyperplane containing a convex set C in one of its closed half spaces

and containing a boundary point of C is said to be a supporting hyperplane of C.

Theorem 1.22 Let C be a convex set and let y be a boundary point of C. Then there is

a hyperplane containing y and containing C in one of its half spaces.

Proof: Let {y(k)}∞k=1 be a sequence in R
n \ c`(C) with y(k) → y as k → ∞. Let

{a(k)}
∞
k=1 be the sequence of vectors constructed in the previous theorem and define â(k) :=

a(k)/‖a(k)‖. Then, for each k, 〈â(k), y
(k)〉 < infx∈C〈â(k), x〉.

Since the sequence {â(k)}
∞
k=1 is bounded, it contains a convergent subsequence {â(kj)}

∞
j=1

which converges to a limit â(o). Then, for any x ∈ C,

〈a(o), y〉 = lim
j→∞

〈â(kj), y
(kj)〉 ≤ lim

j→∞
〈â(kj), x〉 = 〈â(o), x〉.

2

1.3 Extreme Points

For our discussion of extreme points, it will be helpful to recall the definition of polytope

and polygon.

Definition 1.23 A set which can be expresssed as the intersection of a finite number of

half-spaces is said to be a convex polytope. A non-empty, bounded polytope is called a

polygon. The following figures give examples of polytopes and polygons.
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Figure 10: A Convex Polytope
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Exercise 1.24 Given vectors a(1), a(2), . . . , a(p) and real numbers b1, b2, . . . , bp, each in-

equality 〈x, a(i)〉 ≤ bi, i = 1, 2, . . . , p defines a half-space.

Show that if one of the a(i) is zero, the resulting set can still be expressed as the intersection

of a finite number of half-planes.

If we look at a typical convex polygon in the plane, we see that there are a finite number

of corner points, pairs of which define the sides of the polygon.

Figure 13: A Convex Polygon

These five corner points are called extreme points of the polygon. They have the

property that there are no two distinct points of the convex set in terms of which such a

corner point can be written as a convex combination. What is interesting is that every

other point of the convex set can be written as a linear combination of these extreme

points, so that, in this sense, the finitely many corner points can be used to describe the

entire set. Put another way, the convex hull of the extreme points is the entire polygon.

Let us go back to an earlier example, Example 2.4.13.

Example 1.25 Let H1, H2, and H3 be hyperplanes described, respecitvely, by the equa-

tions 5x − y = 1, 2x + 4y = 7, and x + y = 3. The region is the intersection of the

half-spaces defined by these hyperplanes and is depicted in the next figure.

The extreme points of this bounded triangular region are the three vertices of the region,

and are determined by the intersection of two of the hyperplanes. A simple calculation

shows that they are P1 :

(

1

2
,
5

2

)

, P2 :=

(

2

3
,
7

3

)

, P3 :=

(

5

2
,
1

2

)

.
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Figure 14: The Trianglular Region

We can illustrate the statement by first observing that any vertex is a trivial convex

combination of the three vertices, e.g., P1 = 1P1 + 0P2 + 0P3. Moreover, each side is a

convex combination of the two vertices which determine that side. Thus, say, all points

of H3 are of the form

(1 − λ)







1

2
5

2






+ λ







5

2
1

2






=







1

2
+ 2λ

5

2
− 2λ






, for λ ∈ [0, 1].

We can in fact check that all such points lie on H3 by just adding the components. Thus

(

1

2
+ 2λ

)

+

(

5

2
− 2λ

)

=
1

2
+

5

2
= 3.

As for the points interior to the triangle, we note that, as illustrated in the next figure,

that all such points lie on a line segment from P1 to a point P̂ lying on the side determined

by the other two vertices. Thus, we know that for some λ ∈ (0, 1), P̂ = (1− λ)P2 + λP3.

Suppose that the point Q is a point interior to the triangle, and that it lies on a line

segment P1P̂ . The point Q has the form Q : (1 − µ)P2 + µ P̂ . So we can write

Q : (1 − µ)P2 + µ P̂ = (1 − µ)P2 + µ [(1 − λ)P2 + λP3]

= (1 − µ)P2 + µ (1 − λ)P2 + µλP3.
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Figure 15: Rays from P1

Note that all the coefficients in this last expression are non-negative and moreover

(1 − µ) + µ (1 − λ) + µλ = 1 − µ+ µ− µλ+ µλ = 1 − µ+ µ = 1.

so that the point Q is a convex combination of three corner points of the polygon.

Having some idea of what we mean by an extreme point in the case of a polygon, we are

prepared to introduce a definition.

Definition 1.26 A point x in a convex set C is said to be an extreme point of C

provided there are not two distinct points x1, x2 ∈ C, x1 6= x2 such that x = (1−λ) x1+λ x2,

for some λ ∈ (0, 1).

Notice that the corner points of a polygon satisfy this condition and are therefore extreme

points. In the case of a polygon there are only finitely many. However, this may not be

the case. We need only to think of the convex set in R
2 consisting of the unit disk centered

at the origin. In that case, the extreme points are all the points of the unit circle, i.e.,

the boundary points of the disk.

There are several questions that we wish to answer: (a) Do all convex sets have an

extreme point? (Ans.: NO!); (b) Are there useful conditions which guarantee that an

extreme point exists? ( Ans. YES!); (c) What is the relationship, under the conditions

of part (b) between the convex set,C, and the set of its extreme points, ext (C)? (Ans.:
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c` [co ext (C)] = C.), and, (d) What implications do these facts have with respect to

optimization problems?

It is very easy to substantiate our answer to (a) above. Indeed, if we look in R
2 at the set

{(x, y) ∈ R
2 : 0 ≤ x ≤ 1, y ∈ R} (draw a picture!) we have an example of a convex set

with no extreme points. In fact this example is in a way typical of sets without extreme

points, but to understand this statment we need a preliminary result.

Lemma 1.27 Let C be a convex set, and H a supporting hyperplane of C. Define the

(convex) set T := C ∩H. Then every extreme point of T is also an extreme point of C.

Remark: The set T is illustrated in the next figure. Note that the intersection of H with

C is not just a single point. It is, nevertheless, closed and convex since both H and C

enjoy those properties.

<----T 

<---Hyperplane H

C

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

Figure 16: The set T = H ∩ C

Proof: : Supose x̃ ∈ T is not an extreme point of C. Then we can find a λ ∈ (0, 1)

such that x̃ = (1 − λ)x1 + λ x2 for some x1, x2 ∈ C, x1 6= x2. Assume, without loss of

generality, that H is described by 〈x, a〉 = c and that the convex set C lies in the positive

half-space determined by H. Then 〈x1, a〉 ≥ c and 〈x2, a〉 ≥ c. But since x̃ ∈ H,

c = 〈x̃, a〉 = (1 − λ) 〈x1, a〉 + λ 〈x2, a〉,

and thus x1 and x2 lie in H. Hence x1, x2 ∈ T and hence x̃ is not an extreme point of T .

2
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We can now prove a theorem that guarantees the existence of extreme points for certain

convex subsets of R
n.

Theorem 1.28 A non-empty, closed, convex set C ⊂ R
n has at least one extreme point

if and only if it does not contain a line, that is, a set L of the form L = {x + α d : α ∈

R, d 6= 0}.

Proof: Suppose first that C has an extreme point x(e) and contains a line L = {x+αd :

α ∈ R, d 6= 0}. We will see that these two assumptions lead to a contradiction. For each

n ∈ N, the vector

x
(n)
± :=

(

1 −
1

n

)

x(e) +
1

n
(x± n d) = x(e) ± d+

1

n
(x− x(e))

lies in the line segment connecting x(e) and x ± n d, and so it belongs to C. Since C

is closed, x(e) ± d = lim
n→∞

x
(n)
± must also belong to C. It follows that the three vectors

x(e) − d, x(e) and x(e) + d, all belong to C contradicting the hypothesis that x(e) is an

extreme point of C.

To prove the converse statement, we will use induction on the dimension of the space.

Suppose then that C does not contain a line. Take, first, n = 1. The statement is

obviously true in this case for the only closed convex sets which are not all of R are just

closed intervals.

We assume, as induction hypothesis, that the statement is true for R
n−1. Now, if a

nonempty, closed, convex subset of R
n contains no line, then it must have boundary

points. Let x be such a point and let H be a supporting hyperplane of C at x. Since H

is an (n− 1)-dimensional manifold, the set C ∩H lies in an (n− 1)-dimensional subspace

and contains no line, so by the induction hypothesis, C ∩H must have an extreme point.

By the preceeding lemma, this extreme point of C. 2

From this result we have the important representation theorem:

Theorem 1.29 A closed, bounded, convex set C ⊂ R
n is equal to c` [ co ext (C)].

Proof: We begin by observing that since the set C is bounded, it can contain no line.

Moreover, the smallest convex set that contains the non-empty set ext (C) is just the

convex hull of this latter set. So we certainly have that C ⊃ c`[ co ext (C)] 6= ∅. Denote
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the closed convex hull of the extreme points by K. We remark that, since C is bounded,

K is necessarily bounded.

We need to show that C ⊂ K. Assume the contrary, namely that there is a y ∈ C with

y 6∈ K. Then by the first separation theorem, there is a hyperplane Ĥ separating y and

K. Thus, for some a 6= 0, 〈y, a〉 < inf
x∈K

〈x, a〉. Let co = inf
x∈C

〈x, a〉. The number co is finite

and there is and x̂ ∈ C such that 〈x̂, a〉 = co because, by the theorem of Weierstraß, a

continuous function (in this case x 7→ 〈x, a〉) takes on its minimum value over any closed

bounded set.4

It follows that the hyperplane H = {x ∈ R
n : 〈x, a〉 = co} is a supporting hyperplane to

C. It is disjoint from K since co < inf
x∈K

〈x, a〉. The preceeding two results then show that,

the set H ∩ C has an extreme point which is also a fortiori an extreme point of C and

which cannot then be in K. This is a contradiction. 2.

Up to this point, we have answered the first three of the questions raised above. Later,

we will explore the relationship of these results to the simplex algorithm of linear pro-

gramming.

1.4 Convex Functions

Our final topic in this first part of the course is that of convex functions. Again, we

will concentrate on the situation of a map f : R
n → R although the situation can be

generalized immediately by replacing R
n with any real vector space V .

The idea of a convex functions is usually first met in elementary calculus when the nec-

essary conditions for a maximum or minimum of a differentiable function are discussed.

There, one distinguishes between local maxima and minima by looking at the “concavity”

of a function; functions have a local minimum at a point if they are “concave up” and a

local maximum if they are concave down. The second derivative test is one which checks

the concavity of the function.

It is unfortunate that the terminology persists. As we shall see, the mathematical prop-

erties of these functions can be fully described in terms of convex sets and in such a way

that the analysis carries over easily from one to multiple dimensions. For these reasons,

among others, we take, as our basic notion, the idea of a convex set in a vector space.

We will find it useful, and in fact modern algorithms reflect this usefulness, to consider

functions fR
n → R

∗ where R
∗ is the set of extended real numbers. This set is obtained

from the real numbers by adjoining two symbols, +∞ and −∞ to R together with the

4The continuity of this map follows immediately from the Cauchy-Schwarz Inequality!
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following relations: −∞ < s < +∞ for all x ∈ R. Thus the set R
∗ = R∪{−∞,+∞}, and

any element of the set is called an extended real number. The arithmetic operations are

extended, but with some exceptions. Thus x±∞ = ±∞,±∞+±∞ = ±∞, x·±∞ = ±∞

if x > 0, x · ±∞ = ∓∞ if x < 0, and so forth. The relations +∞ + (−∞) and 0 · (±∞)

are not defined.

In fact, we will have little need for doing arithemetic with these symbols; for us, they are

merely a convenience, so that, for example, instead of saying that a given function f is

not bounded below, we can simply write inf f = −∞.

We want to give an interesting example here, but before we do that, we need to recall the

definition of the graph of a function.

Definition 1.30 Let f : A → B, where A and B are non-empty sets. Then the graph

of f is defined by

Gr (f) := {(a, b) : a = f(b), a ∈ A, b ∈ B}.

A probably new definition is the following one for the so-called indicator function of a

set.

Definition 1.31 Let S ⊂ R
n be a non-empty set. Then the indicator function of S is

defined as the function ψS given by

ψS(x) :=

{

0 if x ∈ S

+∞ if x 6∈ S.

Example 1.32 Suppose that f : R
n → R and let S ⊂ R be non-empty. then the

restriction of f to S, written f

∣

∣

∣

∣

S

, can be defined in terms of its graph as

Gr

(

f

∣

∣

∣

∣

S

)

= {(y, x) : x ∈ S, y = f(x)}.

On the other hand, consider the function f + ψS. This function maps R
n to R

∗ and, by

definition is

(f + ψS) (x) =

{

f(x), if x ∈ S

+∞, if x 6∈ S.
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Note that since we assume here that f(Rn) = R, the function does not take on the value

+∞ so that the arithmetic makes sense!

The point is that the function f +ψS can be identified with the restriction of the function

f to the set S.

Before beginning with the main part of the discussion, we want to keep a couple of

examples in mind.

The primal example of a convex function is x 7→ x2, x ∈ R. As we learn in elementary

calculus, this function is infinitely often differentiable and has a single critical point at

which the function in fact takes on, not just a relative minimum, but an absolute minimum.

Figure 17: The Generic Parabola

The critical points are, by definition, the solution of the equation
d

dx
x2 = 2 x or 2 x = 0.

We can apply the second derivative test at the point x = 0 to determine the nature of the

critical point and we find that, since
d2

dx2

(

x2
)

= 2 > 0, the function is ”concave up” and

the critical point is indeed a point of relative minimum. That this point gives an absolute

minimum to the function, we need only see that the function values are bounded below

by zero since x2 > 0 aofr all x 6= 0.

We can give a similar example in R
2.
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Example 1.33 We consider the function

(x, y) 7→
1

2
x2 +

1

3
y2 := z,

whose graph appears in the next figure.
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Figure 18: An Elliptic Parabola

This is an elliptic paraboloid. In this case we expect that, once again, the minimum will

occur at the origin of coordinates and, setting f(x, y) = z, we can compute

grad (f) (x, y) =







x

2

3
y






, and H(f(x, y)) =







1 0

0
2

3






.

Notice that, in our terminology, the Hessian matrix H(f) is positive definite at all points

(x, y) ∈ R
2.

The critical points are exactly those for which grad [f(x, y)] = 0 whose only solution is

x = 0, y = 0. The second derivative test is just that

det H(f(x, y)) =

(

∂2f

∂x2

) (

∂2f

∂y2

)

−
∂2f

∂x ∂y
> 0
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which is clearly satisfied.

Again, since for all (x, y) 6= (0, 0), z > 0, the origin is a point where f has an absolute

minimum.

As the idea of convex set lies at the foundation of our analysis, we want to describe the

set of convex functions in terms of convex sets. To do this, we introduce a crucial object

associated with a function, namely its epigraph.

Definition 1.34 Let V be a real vector space and S ⊂ V be a non-empty set. If f : S → R

then epi (f) is defined by

epi (f) := {(z, s) ∈ R
∗ × S : z ≥ f(s)}.

Convex functions are defined in terms of their epigraphs as indicated next.

Definition 1.35 Let C ⊂ R
n be convex and f : C −→ R

∗. Then the function f is called

a convex function provided epi (f) ⊂ R × R
n is a convex set.

We emphasize that this definition has the advantage of directly relating the theory of

convex sets to the theory of convex functions. However, a more traditional definition is

that a function is convex provided that, for any x, y ∈ C and any λ ∈ [0, 1]

f ( (1 − λ) x+ λ y) ≤ (1 − λ) f(x) + λ f(y) .

In fact, these definitions turn out to be equivalent. Indeed, we have the following result.

Theorem 1.36 Let C ⊂ R
n be convex and f : C −→ R

∗. Then the following are

equivalent:

(a) epi(f) is convex.

(b) For all λ1, λ2, . . . , λn with λi ≥ 0 and
∑n

i=1 λi = 1, and points xi ∈ C, i = 1, 2, . . . , n,

we have

f

(

n
∑

i=1

λi xi

)

≤
n
∑

i=1

λi f(xi) .
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(c) For any x, y ∈ C and λ ∈ [0, 1],

f ( (1 − λ) x+ λ y ) ≤ (1 − λ) f(x) + λ f(y) .

Proof: To see that (a) implies (b) we note that, for all i = 1, 2, . . . , n, (f(xi), xi) ∈

epi (f). Since this latter set is convex, we have that

n
∑

i=1

λi (f(xi), xi) =

(

n
∑

i=1

λi f(xi),

n
∑

i=1

λi xi

)

∈ epi (f) ,

which, in turn, implies that

f

(

n
∑

i=1

λi xi

)

≤
n
∑

i=1

λi f(xi) .

This establishes (b). It is obvious that (b) implies (c). So it remains only to show that

(c) implies (a) in order to establish the equivalence.

To this end, suppose that (z1, x1), (z2, x2) ∈ epi (f) and take 0 ≤ λ ≤ 1. Then

(1 − λ) (z1, x1) + λ (z2, x2) = ((1 − λ) z1 + λ z2, (1 − λ) x1 + λ x2) ,

and since f(x1) ≤ z1 and f(x2) ≤ z2 we have, since (1 − λ) > 0, and λ > 0, that

(1 − λ) f(x1) + λ f(x2) ≤ (1 − λ) z1 + λ z2 .

Hence, by the assumption (c), f ( (1 − λ) x1 + λ x2) ≤ (1 − λ) z1 + λ z2, which shows this

latter point is in epi(f). 2

In terms of the indicator function of a set, which we defined earlier, we have a simple

result

Proposition 1.37 A non-empty subset D ⊂ R
n is convex if and only if its indicator

function is convex.

Proof: The result follows immediately from the fact that epi (ψD) = D × R≥0.

Certain simple properties follow immediately from the analytic form of the definition (part

(c) of the equivalence theorem above). Indeed, it is easy to see, and we leave it as an

exercise for the reader, that if f and g are convex functions defined on a convex set C,
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then f + g is likewise convex on C. The same is true if β ∈ real , β > 0 and we consider

βf .

We also point out that if f : R
n −→ R is a linear or affine, then f is convex. Indeed,

suppose that for a vector a ∈ R
n and a real number b, the function f is given by f(x) =<

a, x > +b. Then we have, for any λ ∈ [0, 1],

f( (1 − λ) x+ λ y) = < a, (1 − λ) x+ λ y > +b = (1 − λ) < a, x > +λ < a, y > +(1 − λ) b+ λ b

= (1 − λ) (< a, x > +b) + λ (< a, y > +b) = (1 − λ) f(x) + λ f(y) ,

and so f is convex, the weak inequality being an equality in this case.

In the case that f is linear, that is f(x) =< a, x > for some a ∈ R
n then it is easy to see

that the map ϕ : x → [f(x)]2 is also convex. Indeed, if x, y ∈ R
n then, setting α = f(x)

anad β = f(y), and taking 0 < λ < 1 we have

(1 − λ)ϕ(x) + λϕ(y) − ϕ( (1 − λ) x + λ y)

= (1 − λ)α2 + λ β2 − ( (1 − λ)α+ λ β)2

= (1 − λ)λ (α− β)2 ≥ 0 .

Note, that in particular for the function f : R −→ R given by f(x) = x is linear and that

[f(x)]2 = x2 so that we have a proof that the function that we usually write y = x2 is a

convex function.

A simple sketch of the parabola y = x2 and any horizontal cord (which necessarily lies

above the graph) will convince the reader that all points in the domain corresponding to

the values of the function which lie below that horizontal line, form a convex set in the

domain. Indeed, this is a property of convex functions which is often useful.

Proposition 1.38 If C is a convex set and f : C −→ R is a convex function, then the

level sets {x ∈ C | f(x) ≤ α} and {x ∈ C | f(x) < α} are convex for all scalars α.

Proof: We leave this proof as an exercise.

Notice that, since the intersection of convex sets is convex, the set of points simultaneously

satisfying m inequalities f1(x) ≤ c1, f2(x) ≤ c2, . . . , fm(x) ≤ cm where each fi is a convex
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function, defines a convex set. In particular, the polygonal region defined by a set of such

inequalities when the fi are affine is convex.

From this result, we can obtain an important fact about points at which a convex function

attain a minimum.

Proposition 1.39 Let C be a convex set and f : C −→ R a convex function. Then the

set of points M ⊂ C at which f attains its minumum is convex. Moreover, any relative

minimum is an absolute minimum.

Proof: If the function does not attain its minimum at any point of C, then the set of

such points in empty, which is a convex set. So, suppose that the set of points at which

the function attains its minimum is non-empty and let m be the minimal value attained

by f . If x, y ∈M and λ ∈ [0, 1] then certainly (1 − λ)x + λy ∈ C and so

m ≤ f( (1 − λ) x+ λ y) ) ≤ (1 − λ) f(x) + λ f(y) = m ,

and so the point (1 − λ)x+ λy ∈M . Hence M , the set of minimal points, is convex.

Now, suppose that x? ∈ C is a relative minimum point of f , but that there is another

point x̂ ∈ C such that f(x̂) < f(x?). On the line (1 − λ)x̂ + λx? , 0 < λ < 1, we have

f((1 − λ) x̂+ λ x?) ≤ (1 − λ) f(x̂) + λ f(x?) < f(x?) ,

contradicting the fact that x? is a relative minimum point. 2

Again, the example of the simple parabola, shows that the set M may well contain only

a single point, i.e., it may well be that the minimum point is unique. We can guarantee

that this is the case for an important class of convex functions.

Definition 1.40 A real-valued function f , defined on a convex set C is said to be strictly

convex provided, for all x, y ∈ C, x 6= y and λ ∈ (0, 1), we have

f( (1 − λ) x+ λ y) ) < (1 − λ) f(x) + λ f(y) .

Proposition 1.41 If C is a convex set and f : C −→ R is a strictly convex function

then f attains its minimum at, at most, one pont.
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Proof: Suppose that the set of minimal points M is not empty and contains two distinct

points x and y. Then, for any 0 < λ < 1, since M is convex, we have (1− λ)x+ λy ∈M .

But f is strictly convex. Hence

m = f( (1 − λ) x+ λ y ) < (1 − λ) f(x) + λ f(y) = m ,

which is a contradiction. 2

If a function is differentiable then, as in the case in elementary calculus, we can give

characterizations of convex functions using derivatives. If f is a continuously differentiable

function defined on an open convex set C ⊂ R
n then we denote its gradient at x ∈ C, as

usual, by ∇ f(x). The excess function

E(x, y) := f(y) − f(x) − 〈∇ f(x), y − x〉

is a measure of the discrepancy between the value of f at the point y and the value of the

tangent approximation at x to f at the point y. This is illustrated in the next figure.
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Figure 19: The Tangent Approximation

Now we introduce the notion of a monotone derivative

Definition 1.42 The map x 7→ ∇ f(x) is said to be monotone on C provided
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〈∇ f(y) −∇ f(x), y − x〉 ≥ 0 ,

for all x, y ∈ C.

We can now characterize convexity in terms of the function E and the monotonicity

concept just introduced. However, before stating and proving the next theorem, we need

a lemma.

Lemma 1.43 Let f be a real-valued, differentiable function defined on an open interval

I ⊂ R. Then if the first derivative f ′ is a non-decreasing function on I, the function f is

convex on I.

Proof: Choose x, y ∈ I with x < y, and for any λ ∈ [0, 1], define zλ := (1− λ)x+ λy. By

the Mean Value Theorem, there exist u, v ∈ R , x ≤ v ≤ zλ ≤ u ≤ y such that

f(y) = f(zλ) + (y − zλ) f
′(u) , and f(zλ) = f(x) + (zλ − x) f ′(v) .

But, y−zλ = y− (1−λ)x−λy = (1−λ)(y−x) and zλ−x = (1−λ)x+λy−x = λ(y−x)

and so the two expressions above may be rewritten as

f(y) = f(zλ) + λ (y − x) f ′(u) , and f(zλ) = f(x) + λ (y − x) f ′(v) .

Since, by choice, v < u, and since f ′ is non-decreasing, this latter equation yields

f(zλ) ≤ f(x) + λ (y − x) f ′(u) .

Hence, multiplying this last inequality by (1− λ) and the expression for f(y) by −λ and

adding we get

(1−λ) f(zλ)−λ f(y) ≤ (1−λ) f(x)+λ(1−λ)(y−x)f ′(u)−λf(zλ)−λ(1−λ)(y−x)f ′(u) ,

which can be rearranged to yield

(1 − λ) f(zλ) + λ f(zλ) = f(zλ) ≤ (1 − λ) f(x) + λ f(y) ,

and this is just the condition for the convexity of f 2

We can now prove a theorem which gives three different characterizations of convexity for

continuously differentiable functions.
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Theorem 1.44 Let f be a continuously differentiable function defined on an open convex

set C ⊂ R
n. Then the following are equivalent:

(a) E(x, y) ≥ 0 for all x, y ∈ C;

(b) the map x 7→ ∇f(x) is monotone in C;

(c) the function f is convex on C.

Proof: Suppose that (a) holds, i.e. E(x, y) ≥ 0 on C × C. Then we have both

f(y)− f(x) ≥ 〈∇ f(x), y − x〉 ,

and

f(x) − f(y) ≥ 〈∇ f(y), x− y〉 = −〈∇ f(y), y − x〉 .

Then, from the second inequality, f(y) − f(x) = 〈∇ f(y), x− y〉, and so

〈∇ f(y)−∇ f(x), y − x〉 = 〈∇ f(y), y− x〉 − 〈∇ f(x), y − x〉

≥ (f(y) − f(x)) − (f(y) − f(x)) ≥ 0 .

Hence, the map x 7→ ∇ f(x) is monotone in C.

Now suppose the map x 7→ ∇ f(x) is monotone in C, and choose x, y ∈ C. Define a

function ϕ : [0, 1] → R by ϕ(t) := f(x+ t(y−x)). We observe, first, that if ϕ is convex on

[0, 1] then f is convex on C. To see this, let u, v ∈ [0, 1] be arbitrary. On the one hand,

ϕ((1−λ)u+λv) = f(x+[(1−λ)u+λv](y−x)) = f( (1−[(1−λ)u+λv]) x+((1−λ)u+λv) y) ,

while, on the other hand,

ϕ((1 − λ)u+ λv) ≤ (1 − λ) f(x+ u(y − x)) + f(x+ v(y − x)) .

Setting u = 0 and v = 1 in the above expressions yields

f((1 − λ) x) + λ y) ≤ (1 − λ) f(x) + λ f(y) .

so the convexity of ϕ on [0, 1] implies the convexity of f on C.

Now, choose any α, β, 0 ≤ α < β ≤ 1. Then
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ϕ′(β) − ϕ′(α) = 〈(∇f(x+ β(y − x)) −∇f(x+ α(y − x)) , y − x〉 .

Setting u := x+ α(y − x) and v := x+ β(y − x)5 we have v − u = (β − α)(y − x) and so

ϕ′(β) − ϕ′(α) = 〈(∇f(v) −∇f(u), v − u〉 ≥ 0 .

Hence ϕ′ is non-decreasing, so that the function ϕ is convex.

Finally, if f is convex on C, then, for fixed x, y ∈ C define

h(λ) := (1 − λ) f(x) + λ f(y) − f((1 − λ) x+ λ y) .

Then λ 7→ h(λ) is a non-negative, differentiable function on [0, 1] and attains its minimum

at λ = 0. Therefore 0 ≤ h′(0) = E(x, y), and the proof is complete. 2

As an immediate corollary, we have

Corollary 1.45 Let f be a continuously differentiable convex function defined on a convex

set C. If there is a point x? ∈ C such that, for all y ∈ C, 〈∇ f(x?), y − x?〉 ≥ 0, then x?

is an absolute minimum point of f over C.

Proof: By the preceeding theorem, the convexity of f implies that

f(y) − f(x?) ≥ 〈∇ f(x?), y − x?〉 ,

and so, by hypothesis,

f(y) ≥ f(x?) + 〈∇ f(x?), y − x?〉 ≥ f(x?) .

2

Finally, let us recall some facts from multi-variable calculus. Suppose that D ⊂ R
n is

open and that the function f : D −→ R has continuous second partial derivatives in D.

Then we define the Hessian of f to be the n × n matrix of second partial derivatives,

denoted ∇2f(x) or F (x):

∇2f(x) :=

[

∂2f(x)

∂xi∂xj

]

.

5Note that u and v are convex combinations of points in the convex set C and so u, v ∈ C.
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Since
∂2f

∂xi∂xj

=
∂2f

∂xi∂xi

,

it is clear that the Hessian is a symmetric matrix.

A result of great usefulness in analysis is the result known as Taylor’s Theorem or

sometimes generalized mean value theorems. For a function f which is continuously

differentiable on its domain D ⊂ R
n, which contains the line segment joining two points

x1, x2inD the theorem asserts the existence of a number θ ∈ [0, 1] such that

f(x2) = f(x1) + 〈∇ f(θ x1 + (1 − θ) x2), x2 − x1〉 .

Moreover, if f is twice continuously differentiable then there is such a number θ ∈ [0, 1]

such that

f(x2) = f(x1) + 〈∇ f(x1), x2 − x1〉 +
1

2

〈

x2 − x1,∇
2f(θ x1 + (1 − θ) x2)(x2 − x1)

〉

.

Now, the Hessian that appears in the above formula is a symmetric matrix, and for such

matrices we have the following definition.

Definition 1.46 An n × n symmetric matrix, Q, is said to be positive semi-definite

provided, for all x ∈ R
n,

〈x,Qx〉 ≥ 0 .

The matrix Q is said to be positive definite provided for all x ∈ R
n , x 6= 0,

〈x,Qx〉 > 0 .

We emphasize that the notions of positive definite and positive semi-definite are defined

only for symmetric matrices.

Now, for twice continuously differentiable functions there is another (“second order”)

characterization of convexity.

Proposition 1.47 Let D ⊂ R
n be an open convex set and let f : D −→ R be twice

continuously differentiable in D. Then f is convex if and only if the Hessian matrix of f

is positive semi-definite throughout D.
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Proof: By Taylor’s Theorem we have

f(y) = f(x) + 〈∇ f(x), y − x〉 +
1

2

〈

y − x,∇2f(x + λ (y − x))(y − x)
〉

,

for some λ ∈ [0, 1]. Clearly, if the Hessian is positive semi-definite, we have

f(y) ≥ f(x) + 〈∇ f(x), y − x〉 ,

which in view of the definition of the excess function, means that E(x, y) ≥ 0 which

implies that f is convex on D.

Conversely, suppose that the Hessian is not positive semi-definite at some point x ∈ D.

Then, by the continuity of the Hessian, there is a y ∈ D so that, for all λ ∈ [0, 1],

〈y − x,∇2f(x+ λ(y − x)) (y − x)〉 < 0 ,

which, in light of the second order Taylor expansion implies that E(x, y) < 0 and so f

cannot be convex. 2
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