1 ADMM

1.1 Dual ascent

Recall that if strong duality holds, then the primal optimal value is equal
to the dual optimal value, that is

f@®) =g\ p%)

where x* (*, u*) are primal (dual) optimal solution.
In particular z* € argmin L(z, *, u*).

Consider the the problem
min f(x) subject to Az =b

The Lagrangian is L(z,u) = f(z) + (u, Ax — b)
The dual function is given by

9(p) = inf L(z, p)
To maximize the dual function, we consider gradient ascent
P = ik .V g
V(o) = Vyinf Lz, o) = ¥, inf(f(x) + (o, Az — b))
Suppose T = arg min(f(z) + (1o, Az — b)), then
Vg(uo) = Vu(f(F) + (no, Az™ — b)) = Az™ —b
We alternatively minimize L(xz,u*), and then update p*. This leads to the

following algorithm:

.I‘k+1

= arg min L(x,,uk)
X
'uk-i-l — Mk; —I—tk(A.fk—H o b)

Under some conditions (eg. f is strongly convex), this methods converges.
We can also generalize this to problems with inequality constraints.

Advantage: Decomposability
Disadvantage: Poor convergence properties

1.2 Augmented Lagrangian

Consider
min f(x) + gHA.T —b||?, subject to Az =b

If p > 0, this problem has the same set of solution as
min f(x) subject to Az =b

This motivates the definition of the augmented Lagrangian, which is given
by
p
Lol) = J() + 5 Az — b2 + (s Az — 1)

We try to apply this to the dual ascent algorithm.
Recall the KKT conditions for the original problem are

Az* =b, Vf(z*)+ ATp* =0

k+1

Since ¥t = argmin L, (x, u*), we have

0= VaoL,(2", 1¥)
= V (@) + AT (u + p(Az"T b))

If we choose p as the step size for updating p, then we have Vf(zF1) +
ATﬂkJrl —0.
Hence we get the following algorithm, which is called method of multipliers,

k+1

2" = argmin L, (z, u¥)
x

ILLkJrI — /’Lk + p(AH?kJrl _ b)

Advantage: Better convergence properties
Disadvantage: Not decomposable

1.3 ADMM
Consider the problem

min f(z) + g(z) subject to Ax + Bz = ¢

T,z

The augmented Lagrangian is given by

Ly(w, 2 1) = f(x) + 9(2) + {1, Az + Bz — &) + £]| Az + Bz — ||

2

Instead of minimizing L, over z, z jointly, we split the minimization into 2
parts. This is called the general ADMM algorithm, which is given by
2" = argmin L, (z, 2%, u¥)
x

k+1

21 = arg min L, (2"
z

2 1")
YL = oF 4 p(Adk T 4 B ()
We can also consider the scaled version of ADMM. Let v = %u, then
Ly(x,z,p1) = f(x) + g(2) + (u, Avr + Bz — ¢) + gHAx + Bz —¢|]?
= f(2) +9(z) + Ell Az + Bz — e+ v|]* = v
Hence, we have the following scaled ADMM

ZF = argmljn(f(x) + gHAx + BZF — 40|

2K = argmin(g(z) + gHAka + Bz —c+ V|2
z

= DR APt B ¢

We have good convergence properties for ADMM:
Assume f, g are closed,proper and convex and strong duality holds. Then:

1. Az + B2F — ¢ — 0.
2. f(z*) +g(z*) = p*

3.k —

1.4 Examples

Convex constraints
Consider

min f(x)

zeC

where C' is a closed convex set.
We first transform the problem into ADMM form

min f(z) + g(z) subject tox — 2z =0

where ¢ is the indicator function of C'
The z update is given by

1 = argmin(g(2) + ElJe* ! — 2+ 5|2) = Po(ab ! 405

where Pc(-) denotes the projection onto C.
Hence the ADMM iteration is give by

¥ = argmin f(x) + ng — 24w
x

k||2
KL= po(zh 4 k)

L S S R

1% z

LASSO
Consider the [1-regularized least square problem:

1
min — || Az — b||3 + Az
z 2
Again, we transform the problem into ADMM form
1) .
min iﬂAx —b||5 + Al|z||1 subject to x —z =0
T,z
We first consider the x update:
E+1 _ 1 2, P k k|2
o = argmin(o | Az — b3 + D)l — 2 + o4]B)

This is equivalent to the least square problem

2

min
x

[f%f] o [m<zkb—uk>]

2
Hence

k+1 _ (AT B T b
2kt = (AT A+ p1)~t [AT /I [\/ﬁ(zk—”k)}

— (AT A+ pI) (AT + p(2* —)
Now we consider the z update

2R = argmzin)\Hz]h + gHz — Pt k|2

This problem is separable. Each component of z**! is given by
PR argrrzin Aly| + g(y — gt k)2

We differentiate the objective function (let’s call it g(y))

J(y) = Abply —aF™ —vF)y y>0
At ply— a2 —uF) y <0

)

If y* > 0, then y* = xf“ + vk — %)\, and this holds if xf“ +vF) > %)\.
If y* < 0, then y* = xf“ + Vf + %A, and this holds if xf“ + Vf) < —%)\.
Lastly, if |25 4+ vF)| < 1) then y* = 0.

We denote this by S /p(-g (Soft-thresholding operator)

Hence

SRl S,\/p(xkﬂ + k)
Therefore, the ADMM iteration for LASSO is given by
2* = (ATA + pI) 7L (AT + p(2F — vF))
zk-i—l _ S)\/p(llik+1 + yk)

PEHL k4 gkl ke

