2.4 Subgradient of Convex Function

In this section, we introduce the crucial concept of subgradient for convex func-
tions. It acts as generalized derivative for nonsmooth functions and has many
applications in optimization theory.

Definition:(Subgradient) Let f : R — R be a convex function and let
T € domf. An element g € R™ is called a subgradient of f at T if

f(x) = f(@) > {9,z —T) for all z € R"
The collection of all subgradients of f is denoted by 0f(Z).

Proposition: Let f be a convex function and let Z € int(domf), then Jf(Z) is
nonempty and compact.

Proof. Since f is convex, epif is a convex set.
By the supporting hyperplane theorem to epif and the point (Z, f(T)), there
exists (a,b) # 0 such that

(][ ) =0 e

By counsidering (Z,t) € epif, we must have b < 0. Also
(a,x —T) + b(f(x) — f(T)) <0 for all

Suppose b = 0, this implies (a,2 —Z) < 0.
This is impossible since T € int(domj). Hence, b < 0. Then

(-3.2-%) < fa) - /@)

Therefore, —¢ € Of(z) # 0.
Recall that a function is locally Lipschitz continuous on the int(domf).
So there exists € > 0 such that

f(x) = f(y) < Lllz — yll, for all z,y € B(T;e)
Let g € 0f(T). Consider x =7 + ﬁ7 then
ellgll = (g, 2 =7) < f(z) — f(T) < Ll|z — Z|| = Le
Then we have ||g|| < L. Therefore 9f(Z) is bounded.

It follows from the definition that df(Z) is closed and hence compact. O

For a differentiable convex function, the subdifferential is just the usual gradient.
Proposition: Let f: R™ — R be convex and differentiable at Z € int(domf).
Then 0f(Z) = {Vf(Z)}.



Proof. Since f is convex, we have
(Vf(Z),z—7) < f(z) — f(T) for all z € R"

So Vf(T) € 0f(T).
Conversely, suppose g € 9f(T). Since f is differentiable at T, then for all € > 0,
there exists 6 > 0 such that

flx)= f(@) —(Vf(@),x —T) < €||lx —T|| for all z with ||z — || <§

Then
(9—Vf(@),z—7) <¢€llz —T|| for all x with ||z —Z|| < ¢

Hence ||g — Vf(T)|| < e. Since € is arbitrary, this shows that g = V f(T).
Therefore, 0f(Z) = {Vf(T)}. O

Example: Let f : R — R be defined by

0 z € [-1,1]
flx)=<lz] -1 ze€[-2,1)U(1,2]
00 x € (—00, —2) U (2,00)

For z € (—2,1), (—1,1) and (1,2), f is differentiable, hence df(x) = {V f(x)}.
For x € (—o0, —2) U (2,00), f(z) = oo, hence df(z) = 0.
For x = 1, we show that 0f(x) = [0,1]. Let g € 9f(1). Then

f(y) > g(z—1) for all y

If y € [1,2], then z — 1 > g(x — 1), that is 1 > g.
Ify € [-1,1], then 0 > g(x — 1), s0 g(1 —2) > 0 and g > 0.
It is easy to check that for g € [0,1], g satisfies

fly) > f(1) +g(z—1) for all y

Hence, 0f(1) = [0, 1].
The subdifferential of other points can be found similarly.

We have
0 x € (—00,—2) U (2,00)
(—o0,—1] z=-2
{-1} z e (—-2,-1)
1,0 z=-1
@) =1 (o € (~1,1)
[0,1] z=1
{1} z € (1,2)
[1,00) =2

The following results show the relationship between subgradients and conjugate
of convex functions.



Proposition: Let f: R” — R be a function with domf # (). Then
(z,y) < f(z) + f*(y) for all 2,y
Proof. By the definition of conjugate function, f*(y) > (x,y) — f(x). O

Theorem: Let f: R® — R be convex with 2 € domf. Then g € df(x) if and
only if
f@)+ [7(9) = (g,2)

Proof. Suppose g € 9f(x), then
f(@) +{9,y) — f(y) < {g,x), for all y
Then f(x)+ f*(g) < {g,z). Hence by the above proposition, we have
f(x) + [7(9) = (g,2)
Suppose f(z) + f*(g) = (g, z), then by the definition of conjugate function,
f7(9) = (g,y) — f(y) for all y
Since f*(g) = (g, z) — f(x), we have

(9,2) — f(x) > (9,y) — f(y) for all y

Therefore, g € 0f(x). O

2.5 Basic Calculus Rules
Proposition: Let f: R™ — R be a convex function. Let F be defined by

F(r) = f(Az)

where A € R™*™, Then
AT f(Az) C OF (x)

Proof. Suppose ATg € ATOf(Az), where g € 0f(Ax). Then
F(y) — F(x) — (ATg,y — z) = f(Ay) — f(Az) — (9, Ay — Az) >0
O

Theorem:(Moreau-Rockafellar) Let f,g: R™ — (—o00, 00| be proper convex
functions. Then for every xzg € R"

9f (wo) + dg(wo) C O(f + g)(w0)

-
Moreover, suppose int dom(f) N dom(g) # . Then for every zy € R™,
9f(xo) + 9g(x0) = O(f + g)(x0)



Proof. Let uy € 0f(xg), uz € dg(xg). Then for every z € R™,
f(x) > f(wo) + (u1,x — wo), g(x) > g(w0) + (U2, 2 — 0)

Hence, adding the two inequalities shows that u +v € d(f + ¢)(xo)-
Now, let v € I(f + g)(xo). Note that f(zg) # oo, otherwise this implies that
f + g = oco. Similarly, g(xg) # oo. Next, consider the following two sets

Ay ={(z—=z0,y) s y> f(z) = f(wo) — (v, & — o)}
Ag:={(z —z0,y) : —y = g(x) — g(x0)}-
Ag, Ay are both nonempty and convex (consider epi(f), epi(g)). Also, since
v € I(f + g)(z0), Ay N Ay = 0 (otherwise, adding the above two inequalities
contradict the fact that v € 9(f + g))
Then Ay, Ay can be separated by a hyperplane. So there exists (a,b) # 0, ¢ such
that
<a7$ - .’E0> + by <¢ V(l',y) such that y > f(l’) - f(.’Eo) - <’U,£L' - .’E0>
(a,x — o) + by > ¢, Y(x,y) such that —y > g(z) — g(xo)

Since (0,0) € Ag, ¢ < 0. Since (0,1) € Ay, b <0.
For all € > 0,(0,€) € Ay, since b < 0, letting € — 0, we get ¢ > 0. Hence ¢ = 0.
Suppose b = 0, we have

(a,x — o) <0, V(x,y) such that y > f(x) — f(xo) — (v, — x0)

(a,x — x9) > 0, ¥(x,y) such that —y > g(z) — g(xo)

which are equivalent to
(a,z — xo) <0, Vo € dom(f)

(a,x — xg) > 0, VYa € dom(g)

Let 7 € int dom(f)Ndom(g). Then (a,T—1xo) = 0. Since T € int dom(f), there
exists § > 0 such that B(Z,d) C dom(f). Then

da da

3) =(a, T+ > —9) <0

So a = 0. This contradicts the fact that (a,b) # 0. Hence b < 0.

Let —uz = =%, we have

(a,

<—U,2,J,‘ - .130> <y, V(x,y) such that y > f(x) - f(l'o) - <’va - $0>-
(—u2, 2 — x9) > y,V(x,y) such that —y > g(z) — g(zo)

Consider y = g(zg) — g(x), then uy € dg(zp).

By considering (z, f(z) — f(x0) — (v,& — xg) + € and letting e — 0, we have
up = v —ug € 0f(xg).

Hence v = uy + ug € 9f (o) + 0g(xo).-

Therefore O(f + g)(zo) C Of (o) + dg(xo). O



2.5.1 Directional Derivative

Definition:(Directional Derivative) Let f : R® — R be a function with
x € domf. The directional derivative of f at x with direction d is given by

o)t T2 1) = @)

t—0+ t

Lemma: Let f : R® — R be a convex function with z € domf. Then for all
direction d € R™ and A1, A2 € R with Ao > A1 > 0, we have

flx+Md) = f(z) _ f(z+ Aad) — f(2)

<

/\1 /\2
Proof. Note that x + A\d = %(w + Aod) + (1 — i—;)m Then
)\1 >\1
fl@+Md) < —fl@+ Aad) + (1 — ) f(2)
)\2 >\2
The result follows from the above inequality. O

Lemma: Let f : R® — R be a convex function with z € int(domf). Then
f/(z; d) is finite for every direction d € R™.

Proof. Recall that f is locally Lipschitz at . Then for ¢ small,

flz+td) — f(z), _ Lt[|d]
| , <=,

< Lj|d]f < o0
O

Theorem: Let f: R” — R be a convex function with z € int(domf). Then

f'(z;d) = sup (g,d)
geof(x)

Proof. By the above proposition, we have f/(z;d) = inf;~g w.
Define 9(d) := f’(x;d). Then ¢ is convex and finite for every d.
Therefore, 1 is continuous and hence closed.

Hence, ¢ = ¢ = sup,{(g,d) — ¢*(9)}.

We will show that
. 0 € of(x
w<m={ g € 0f(z)
oo otherwise

Note that 1(0) = 0. Then for all g,
¥*(9) = (9,0) —¢(0) =0
Suppose g € df(x). Then (g, d) — ¢(d) < LEHDZIE) () for all ¢ > 0. So
(g.d) —(d) < f(z;d) —1p(d) = 0 for all d



Therefore, ¥*(g) = supy{(g,d) — ¥ (d)} < 0.
Suppose g ¢ Of(x). Then there exists y such that

(9, y—z) > f(y) — f(z)

Write y = 2 4 dy, then we have (g,do) > f(z 4+ do) — f(z) > f'(x; dp).
Note that ti(d) = ¢ (td), then

Y*(g) = s1d1p{<g, d) —(d)} > i‘;ﬁ’{@’ td) —(td)} = §gg{t(<g, d) —(d))} > oo

Consider ¥**(g) = sup,{(g,d) — v¥*(g9)}.
It follows that ¥**(g) = sup,co(z)(9; d)-

Hence, fl($7 d) = 1Z)(d) = w**(d) = Supgeaf(x) <gv d> O

Theorem:(Dubovitskii-Milyutin) Let fi,..., fm : R" — R be convex func-
tions and let T € Ny, int(domyf;). Let f: R™ — R be given by

() = max fi(x)
and let I(z) = {i| £;(T) = f(@)}. Then

of(@) = conv( | J 0fi(x)).

i€ (T)

Proof. Note that if g € 0f;(Z), then g € 9f(7) for all i € I(Z).
Also, since 0 f(%) is convex, then conv( Uier@ 0fi (T)) Cof(T).

So suppose go € 8f(T) but go ¢ conv( Uier@ ofi(@)).
Note that conv(U,¢ ¢ 0.fi(T)) is compact (Each 0f;(T) is compact).
Then there exists d such that

(go,d) > max sup (g,d) = max f/(T;d)
1€I(T) g€edf; () 1€1(T)

We claim that f'(Z;d) = max;c;) f{(Z;d). Then (go,d) > f'(T;d).
But since gg € 9f (%), then f(Z +td) — f(T) > {(go,d) for all ¢ > 0.
Then f/(%Z;d) > (go,d). This is a contradiction.
Therefore go € conv (| J;, 1@ 0fi (T)).
It remains to prove that f'(Z;d) = max;e;(z) fi(T;d). First for all ¢ > 0,

[@+td)— 1@  fi@+td) — [(@)

t - t

Then f'(z;d) > f/(z;d). Consider {tx} with t;, | 0 and z =T + t1d.

Then there exists ¢ such that ¢ € I(zy) for infinitely many k.
Without loss of generality, assume i € I(zy) for all k.
Then f;(xr) > fi(xx) for all 4, k.

Taking limit and since f; are continuous at T, we have

for all ¢ € I(%)

fz(z) > fi(x) for all ¢



Therefore, f'(7;d) = max;c ) fi(T; d).




3 Duality and Optimal Conditions

3.1 Standard forms of optimization problems

In this section, we introduce some of the most basic forms of convex optimization
problems.

3.1.1 Linear Programs
A linear program (LP) is a problem of the form

min ¢’ x
xr

Ax =D
x>0

3.1.2 Quadratic Programs

A Quadratic program is a problem of the form

1

min §I’TQ:L' +cTx
Ax =1
x>0

3.1.3 Semi-definite Programs (SDP)
A semi-definite program (SDP) is a problem of the form
min C e X
X
Aje X =0b1=12...,p
X >0

3.1.4 Conic Programs
A conic program is a problem of the form

min ¢’ x
xr

Ax =D
re K

where K is a closed convex cone.



3.2 Basics of Convex Optimization

Let’s consider the problem
min f(x)

zeC

where f: R® — R is a convex function and C' is a convex subset of R”.

Definition: A point x € C Ndomf is called a feasible point.
If there is at least one feasible point, then the problem is called feasible.
A point z* is called a minimum of f over C if

z* € Cndomf, f(z*)= inf f(z)
zeC
We may write 2* € argmin,cc f(z) or even * = argmingec f(x) if 2* is the
unique minimizer.

Other than global minimum, we also have a weaker definition of local mini-
mum, one that is only minimum compared to the points nearby.

Definition:(Local minimizer) We call z* a local minimum of f over C if
z* € CNdomf and there exists € > 0 such that

f(z*) < f(x), Vo € C with ||z — 2¥|| <€

In the convex setting, we have the following nice result.

Proposition: Let f : R® — R be a convex function and let C' be a convex
set. Then a local mimimum of f over C is also a global minimum of f over C.
If f is strictly convex, then there exists at most one global minimum of f over

C.

Proof. Suppose z* is a local minimum that is not global.
Then there exists  such that f(z) < f(z*). Then for A € (0,1),

fAz"+ (1= XNz) < Af(2") + (1= A)f(z) < f(z7)

Since f has smaller value on the line connecting x and z*, this contradicts the
local minimality of x*.

Suppose f is strictly convex, let z* be a global minimum of f over C. Let x € C
such that « # x*. Consider y = (v + 2*)/2. Then y € C' and

Fl) < 3@+ ) < Fa)

Since z* is a global minimum, f(z*) < f(y).
Then f(z*) < f(z). Hence z* is the unique global minimum of f over C. O



3.2.1 Existence of solution

Let’s consider a general optimization problem

min f(z

min f(z)

where f:R® — R and C C R".

A basic question is whether a solution to the above problem exists.

Recall the famous Weierstrass theorem. Proposition: If f is continuous and
C is compact, then there exists a global minimum.

In order to consider cases where C' is not bounded (e.g. R™), we need a new
notation.

Definition: (Coercivity) A function f : R® — R is called coercive if for
all sequence {xy} with [zx|| — oo, we have limg_,o0 f(2x) = 00.

Lemma: Let f : R®” — R be a continuous function. Then the following are
equivalent.

1. All level sets of f are compact, i.e. {z| f(z) < a} is compact for all a.
2. f is coercive.

Proof. Suppose all level sets of f are compact. Suppose {z} is a sequence with
||[zk|| — co. Suppose f(zx) # oo. Then there exists subsequence xy; such that
f(z;) is bounded by a for some a. Then {z;,} C V,. This contradicts the
compactness of V,,. Hence, f is coercive.

Conversely, suppose f is coercive. Suppose V,, is not compact for some . Since
f is continuous, V,, must be closed, this means V,, is not bounded.

Hence, there exists a sequence {x} C V,, such that ||zx|| — oco. This contradicts
the coercivity of f since f(xy) < a. O

Proposition: Suppose f is lower-semicontinuous and coercive. Suppose C' is
non-empty and closed. Then f has a global minimum over C'.

Proof. We may assume that f(x) < oo for some 2 € C. Then f* = inf,cc f(z) <
0.

Let {z} C C be a sequence such that lim f(zy) = f* < oco. Then since f is
coercive, {z} is bounded. Then there exists a subsequence x, converging to
a point z*.

Since C is closed, * € C. Then

= lim f(z) = Jlgglo fzg;) > f(x¥)

k— o0

Therefore, x* is a global minimmum of f over C. O

10



3.2.2 Optimal condition

For a unconstrained problem, one has a simple optimality test, which is the
"derivative’ test in calculus.

Let f be a differentiable convex function on R™. Then x* solves

min f(z)

if and only if V f(2*) = 0. How about a constrained problem?
Let’s consider the general constrained problem

min f(x)

zeC

where C' is a convex set, and f is convex.
We have the following result.

Proposition: Let C' be a nonempty convex set and let f : R®™ — R be a
convex differentiable function over an open set that contains C. Then z* € C
minimizes f over C if and only if

(Vf(x*),(z—2%)) >0, Vz € C.
Proof. Suppose (Vf(z*),(z —x*)) > 0, Vz € C, then we have,
fz) = f(@") 2(Vf(@"),(z —2")) 20, Vz € C.

Hence z* indeed minimizes f over C.
Conversely, suppose z* minimizes f over C'. Suppose on the contrary that
(Vf(x*),(z —x*)) <0 for some z € C, then

o £+ alz = a%) - 1)
al0 o

=(V/f(z"), (z —27)) <0.
Then for sufficiently small o, we have f(z*+a(z—z*))—f(z*) < 0, contradicting
the optimality of x*. O

Examples (a) Let’s consider the following linear constrained problem.

m%{{n f(x) subject to Az = b
me n

where A is a m X n matrix and b € R™.
Suppose we have a solution x*, then

(Vf(z*),y — ") >0, Yy such that Ay =b
This is the same as

(VF(z*),h) >0, Vh € N(A).

11



Since —h € N(A) if h € N(A), we have
(Vf(z*),h) =0, Yh € N(A).

Hence Vf(z*) € N(A)+ = R(AT).
So there exists p € R™ such

Vi) +ATu=o0.
To conclude, z* is a solution to the minimization problem if and only if
1. Axz* =b

2. There exists p* € R™ such that Vf(x*) + ATp = 0.

(b) Let’s consider the minimization problem

min f(z), subject to z > 0.
rcR”

Suppose we have a solution x*, then
(Vf(z"),y—2") >0, Yy € RY}.
In particular, 0, 2z* € R}, so
(Vf(z"),2") =0, (Vf(z"),y) 20, ¥y € RY.
Hence, V f(z*) > 0. This is the same as saying there exists A* > 0 such that
Vi@ )= =0

To conclude, x* is a solution if and only if

1. 2*>0

2. There exists A* > 0 such that Vf(z*) —A\* =0

3. Xz =0
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