1.3.2 Characterizations of Differentiable Convex Functions

We now give some characterizations of convexity for once or twice differentiable
functions.

Proposition: Let C' be a nonempty convex open set. Let f : R® — R be
differentiable over an open set that contains C.

(a) f is convex if and only if f(2) > f(z) + (Vf(z), (z — z)), for all z, z € C.
(b) f is stricly convex if and only if the above inequality is strict for z # 2.
Proof. (<=)Letz,y € C, a€[0,1] and z = az + (1 — a)y. We have,

f(@) = f(2) +(Vf(2),(z - 2))

f) = f(2) +(V[f(2), (y —2))-
Then,
af(x)+(1-a)f(y) = f(2)+(f(2), (a(z—2)+(1-a)(y—2))) = f(2) = flaz+(1-a)y)

Hence f is convex.
Conversely, suppose f is convex. For x # z, define g : (0,1] = R by

f@+a(z—2) - f(z)
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g(a) =

Consider a1,z with 0 < a3 < ap < 1. Let @ = &% and Z = = + az(z — ).

Then f(z +a(z —z)) <af(z)+ (1 —a)f(x). So,

flz+aiEz-=) - f(z)

[}

< f(@) - f(=).
Therefore,

fata(z-2) - fz) _ flz+a(z—2)) - fz)

Qg a2

So, g(ay) < g(as), that is, g is monotonically increasing.

Then (Vf(z),(z —z)) = limy0 g(a) < g(1) = f(z) — f(z). So we are done.
The proof for (b) is the same as (a), we just change all inequality to strict
inequality. O

For twice differentiable functions, we have the following characterization.
Proposition: Let C' be a nonempty convex set C R™ and f : R” — R be twice
differentiable over an open set that contains C. Then:

(a) If V2 f(x) is positive semidefinite for all 2 € C, then f is convex over C.

(b) If V2f(x) is positive definite for all x € C, then f is strictly convex over C.



(c) If C is open and f is convex over C, then V2 f(z) is positive semidefinite
for all z € C.

Proof. (a) For all z,y € C,

Fl) = 1)+ (V@) (g = ) + 5y~ 2 V2 f (o + aly = 2))(y — 2)
for some « € [0,1]. Since V2 £ is positive semidefinite, we have

fly) > flx) +(Vf(z),(y —x)),Vr,yeC.

Hence, f is convex over C.

(b) We have f(y) > f(z) + (Vf(x),(y — z)) for all .y € C with = # y since
V2 f is positive definite.

(c) Assume there exist z € C and z € R" such that 2TV2f(z)z < 0. For 2
with sufficiently small norm, we have x + z € C and 27 V2 f(z + az)z < 0 for
all @ € [0,1]. Then

fl@+2)=fx)+ (Vf(z),2) + 2" V2f(z +az)z < f(z) + (Vf(),2).

This contradicts the convexity of f over C. Hence, V2f is indeed positive
semidefinite over C. O

1.4 Relative Interior

Consider I = [0,1] C R. Then the interior of I is (0,1). However, if we consider
I as a subset in R2, then the interior of I is empty. This motivates the following
definition.

Definition:(Relative Interior) Let C C R"™. We say that = is a relative
interior point of C if x € B(x;e)N aff(C') C C, for some € > 0. The set of all
relative interior point of C' is called the relative interior of C, and is denoted
by 1i(C). The relative boundary of C' is equal to cl(C)\ ri(C).

Lemma: Let A, be an m-simplex in R" with m > 1. Then ri(A,,) # 0.

Proof. Let xg, ..., ;, be the vertices of A,,. Let

m

1

= — T;

m+1 1=0

Note that V' := span{x; —xq, ..., Zm — o } is the m-dimensional subspace parallel
to aff(A,,) = aff({zo, ..., zm }).
Hence for all x € V, there exists unique A; such that

m

i=1



Let Ao := —>_7", A\, then (Ao, ..., App,) € R™T and

m m

xr = Z)\i.%‘i, with Z/\l =0
=0 =0

Let L : V — R™*! be the mapping that sends x to (Ao, ..., A\p). It is easy to
check that L is linear and thus continuous.
Hence there exists ¢ such that

[IL(w)]] <

1 if ||ul| <o
Let z € (T + B(0,8)) Naff(A,,) Then, x = T + u, where ||u|| <.
Since z,7 € aff(A,,,) and w =z — T, u € V. Hence ||L(u)|| < #ﬂ
Suppose L(u) = (o, -+, fim), then u = Y21 piy and @ = Y7 (A5 + pa) 2
Since Y7 o i = 0, 21" (74 + pa) = 1. Therefore, z € A,,.

Thus (Z + B(0;9)) Naff(A,,) C A, s0 T € 1i(Ap,). O

Proposition: Let C be a nonempty convex set. Then ri(C') is nonempty.

Proof. Let m be the dimension of C.

If m = 0, then C' must be a singleton. Hence ri(C) # 0.

Suppose m > 1. We first show that there exists m + 1 affinely independent
elements zq, ..., z,, € C.

Let {zg, ..., 2%} be a maximal affinely independent set in C.

Consider K := aff({zq,...,xx}). K C aff(C) since {xo,...,zm} C C.

Suppose y € C but y ¢ K. Then, {xq,...,zx,y} is also affinely independent,
which is a contradiction. Therefore C' C K and hence aff(C') C K. Then

k = dim(K) = dim(aff(C) = m

Therefore, there exists m + 1 affinely independent elements xq, ..., x,, € C.
Let A,, be the m-simplex formed by {zq, ...,z }. By above, aff(A,,) = aff(C).
Since ri(A,,) is not empty, it follows that ri(C) is also nonempty. O



