4.3 Proximal Algorithms
4.3.1 Proximal Operator

Definition:(Proximal operator) Let f : R® — R be a closed proper convex
function. The proximal operator associated with f is defined by

1
prox;(z) := argmin f(u) + 5 [|z — ul)?
u 2

We can also consider the scaled proximal operator.

1
prox, () := argmin f(u) + 5|z — ul]

Example:
Consider the indicator function of a closed convex set:

6(;(96):{0 zeC

oo otherwise

Then 1
proxs, (r) = argmuin do(u) + §||x —ul]? = Po(x)

Hence, the proximal operator for a indicator function is just the projection to
the set.
We can therefore consider proxy as a generalized projection.

Example:
Let f(z) := ||z||1. Then

T, — A T; > A
(prox,p(w))i = Ta(zs) = Cxi + X 2 < =\
0 otherwise

T is also called the soft-thresholding operator.

4.3.2 Basic rules

Proposition:

1. If f(x) = ag(x) + b with a > 0, then
prox;(r) = prox,,(v)
2. If f(z) = g(x) + {a,z) + b, then

prox;(z) = prox,(r — a)



3. If f(z) = g(ax + b) with a # 0, then
1
prox;(z) = o (prox,e,(ax +b) —b)

Proposition:(Moreau decomposition) Suppose f is closed, proper and con-
vex. Then

T = prox () + prox;. (z)
If A > 0, then
x
T = prox, s (x) + Aproxu ;. (X)
Proof. Suppose u = prox;(z). Then the optimal condition gives
0edf(u)+u—=

That is  — u € 9f(u). Then u € df*(x — u). (Exercise!)
This is equivalent to

0Oedfe—uw)+(r—u)—2x
By considering the optimal condition for prox. problem,
T — u = prox . (v)

Therefore, z = prox(x) + prox;.(z). Then extended case can be proved using
the simple version. O

Remark:
Let’s consider the optimal condition for the proximal problem.

1
2= argmin{f(u) + 3 [lz - ul*}
<0e€edf(x)+z—x
sze(I+9f)(x)
Therefore, we also write z = (I+0f)~!(x), which is called the resolvent operator
of Of.
4.3.3 Proximal point algorithm
Consider the problem
min f(x)
where f is convex but may not be differentiable.
Lemma: z* minimizes f if and only if
x* = prox(x")

Therefore, a minimizer of f is also a fixed point of the proximal operator.



Proof. Suppose x* minimizes f, then
1 * * * * *
f@)+ gllr =2 2 f(z*) = ") + glla* — 27|

This shows that x* = prox,(z*).
Suppose x* = prox;(z*). Then by the optimal condition

0€df(z*)+a" —a*
So 0 € 9f(z*). Therefore, z* minimizes f. O

This motivates the proximal point algorithm:

= prox/\f(a:k)

If the proximal operator is a contraction, we can immediately prove the conver-
gence of this algorithm.

This may not be true in general. Nonetheless, the proximal operator has a dif-
ferent property that helps prove the convergence.

Proposition: (Firm nonexpansiveness) Given z1, z2, we have

[[prox (1) — prox;(x2)||* < (prox;(z1) — prox;(z2),z1 — x2)

In particular,
[[prox s (1) — prox g (z2)|| < [lo1 — 2

Given an nonexpansive operator N and « € (0,1), the operator
T:=(1-a)l+aN

is called an averaged operator.
For averaged operator T, if it has a fixed point, then the iteration

2P = T ()

will converge to a fixed point of T

This is known as the Kranoselskii-Mann theorem.

In particular, the firmly nonexpansiveness operators are %-averaged.
Therefore, we can prove the convergence of proximal point algorithm using the

Kranoselskii-Mann theorem.

4.3.4 Proximal Gradient algorithm

Consider the optimization problem

min F(z) = f(z) + g(z)



where f is convex and differentiable, g is convex.
Suppose the proximal operator of g is simple, we consider the proximal gradient
algorithm:

Zhtl = proxtkg(:vk — 1,V f(z"))

This is also called the forward-backward splitting method.
To get convergence result, we assume that f is L-smooth.

Theorem: Suupose f is L-smooth and t; = % Then

L
k_*<7 0 _ %2
Fla¥) = F* < e |

In other words, to get error less than e, we need O(%

) iterations.

Similar to gradient descent, we can get faster convergence if we assume f is
also p-strongly convex.
Theorem Suppose f is p-strongly convex and L-smooth. Let ¢} = % Then

* H\k *
o — P < (1= 5 a0 — 02

Therefore, we get linear convergence if f is also strongly convex.
Example: Consider the LASSO problem:
o1
min §||Ax — b5+ M|z

Let f(2) = 5llAz = blf3, g(z) = A|z|;1.
Then Vf(z) = AT (Az — b). Recall that prox,,(x) = proxy, (z) = Ti(z).
Therefore, the proximal gradient iteration for LASSO is

2P = Ty (2% + tAT (A2b — b))

4.4 ADMM
4.4.1 Dual ascent

Recall that if strong duality holds, then the primal optimal value is equal to the
dual optimal value, that is

(@) =g\, u")

where a* (\*, u*) are primal (dual) optimal solution.
In particular z* € argmin L(z, \*, u*).

Consider the the problem

min f(z) subject to Az =b



The Lagrangian is L(x, u) = f(z) + (u, Az — b)
The dual function is given by

9(p) = inf L(z, p)
To maximize the dual function, we consider gradient ascent
P = b+ Vg (u*)
V(o) = V. inf Lz, po) = Vi (/(x) + 0, Az — b))
Suppose z1 = argmin(f(z) + (o, Ax — b)), then
Vg(uo) = Vu(f (@) + (no, Az™ — b)) = Azt —b
We alternatively minimize L(z,u*), and then update p*. This leads to the

following algorithm:

$k+1

= arg min L(z, u*)
'uk+1 — 'uk 4 tk(AIk+1 _ b)

Under some conditions (eg. f is strongly convex), this methods converges.
We can also generalize this to problems with inequality constraints.

Pros: Decomposability
Cons: Poor convergence properties

4.4.2 Augmented Lagrangian Method

Consider
min f(x) + gHAac — b||?, subject to Az =b

If p > 0, this problem has the same set of solution as
min f(z) subject to Az =b
This motivates the definition of the augmented Lagrangian, which is given by
Ly(w, 1) = f(2) + £l Az — bl + (. A — b)

We try to apply this to the dual ascent algorithm.
Recall the KKT conditions for the original problem are

Az* =b, Vf(*)+ATpu* =0

k+1

Since x**1 = argmin L,(z, u*), we have

0= vpr(l‘k+1’ /uk)
= V(") + AT (P + p(Ac*H — b))



If we choose p as the step size for updating u, then we have Vf(zF+1) +
AT/,Lk+1 =0.
Hence we get the following algorithm, which is called method of multipliers,

2" = argmin L, (x, u*)
x

Iuchrl _ Mk _’_p(Axk+l _ b)

Pros: Better convergence properties
Cons: Not decomposable

4.4.3 ADMM
Consider the problem
leizn f(x) + g(z) subject to Ax + Bz =¢
The augmented Lagrangian is given by
Ly(w,2. ) = f(2) + 9(2) + (1, Az + Bz — &) + L[| Ax + Bz — |

Instead of minimizing L, over x, z jointly, we split the minimization into 2 parts.
This is called the general ADMM algorithm, which is given by

k+1

¥ = argmin L, (z, 2*, p¥)
€T

k+1

A = argmin L, (2!
z

2, )
yk+1 — yk +p(Al‘k+1 +sz+1 _ C)
We can also consider the scaled version of ADMM. Let v = %u, then
Ly(w, 2. ) = f(2) + 9(2) + (1, Az + Bz — ¢) + 5[ Aw + Bz — |
= f@) +9(2) + Ll Az + Bz = c+ vl = S|’
Hence, we have the following scaled ADMM

2F*1 = arg min(f(z) + gHAx + BzF — c+0F|?)

2P = argmin(g(z) + gHA:E’”l + Bz —c+ V5P
z

PR = Uk Akt 4 B ¢

We have good convergence properties for ADMM:

Assume f, g are closed,proper and convex and strong duality holds. Then:
1. Az* + BzF — ¢ — 0.
2. f(z*) +g(z*) = p*
3. uk — pr



4.4.4 Examples

Convex constraints
Consider

min f(x)

zeC

where C' is a closed convex set.
We first transform the problem into ADMM form
min f(x) + g(z) subject tox — 2 =0

where g is the indicator function of C
The z update is given by

2P = argmin(g(z) + ngkH — 24+ V%) = Po(aF ! +0F)

where Po(+) denotes the projection onto C.
Hence the ADMM iteration is give by

25t = argmin f(z) + ng — 2k k|2

P Pc(xk'H + l/k)

R I R R

14 z

LASSO
Consider the [;-regularized least square problem:

1
min o [| Az = b[|3 + All[lx
Again, we transform the problem into ADMM form
1
min §||Am —b||3 + A||z]|1 subject to z — z =0

We first consider the x update:

1
ZF = argm;n(illAfc - |3+ §||x AR b))

This is equivalent to the least square problem

2

min
T

{ J%I ]””‘ [ ﬁ(z’?—vk) ]

2
Hence

= (AT pD) 7 [AT ] { SR —h ]

= (ATA+pD)"H(ATb+ p(2* — %))



Now we consider the z update

2+ = arg min ||z||, + gHz — gkt k2
z
This problem is separable. Each component of z¢*1 is given by
: p
ZFt = arg min Ay + i(y — gt _ k)2

We differentiate the objective function (let’s call it g(y))

Sy = IA TP =) y>0
At ply—af Tt —vf) y<o0

If y* > 0, then y* = zF T 4 vk — %/\, and this holds if 25 + vF) > %)\.
If y* < 0, then y* = x¥ ™ 4+ vk 4 %)\, and this holds if 25 + vF) < —%)\.
Lastly, if |zF ! 4+ vF)| < %)\7 then y* = 0.

We denote this by T /,(-) (Soft-thresholding operator)

Hence
Zk+1 = TA/p(xk'H + Vk)

Therefore, the ADMM iteration for LASSO is given by
"t = (AT A+ pI) " Y AT + p(2* — b))

P T/\/p(xk+1 + Vk)

B S I R



