
4.3 Proximal Algorithms

4.3.1 Proximal Operator

Definition:(Proximal operator) Let f : Rn → R be a closed proper convex
function. The proximal operator associated with f is defined by

proxf (x) := arg min
u
f(u) +

1

2
‖x− u‖2

We can also consider the scaled proximal operator.

proxλf (x) := arg min
u
f(u) +

1

2λ
‖x− u‖2

Example:
Consider the indicator function of a closed convex set:

δC(x) =

{
0 x ∈ C
∞ otherwise

Then

proxδC (x) = arg min
u
δC(u) +

1

2
‖x− u‖2 = PC(x)

Hence, the proximal operator for a indicator function is just the projection to
the set.
We can therefore consider proxf as a generalized projection.

Example:
Let f(x) := ‖x‖1. Then

(proxλf (x))i = Tλ(xi) :=


xi − λ xi > λ

xi + λ xi < −λ
0 otherwise

Tλ is also called the soft-thresholding operator.

4.3.2 Basic rules

Proposition:

1. If f(x) = ag(x) + b with a > 0, then

proxf (x) = proxag(x)

2. If f(x) = g(x) + 〈a, x〉+ b, then

proxf (x) = proxg(x− a)

1

3. If f(x) = g(ax+ b) with a 6= 0, then

proxf (x) =
1

a

(
proxa2g(ax+ b)− b

)
Proposition:(Moreau decomposition) Suppose f is closed, proper and con-
vex. Then

x = proxf (x) + proxf∗(x)

If λ > 0, then

x = proxλf (x) + λprox 1
λ f

∗

(x
λ

)
Proof. Suppose u = proxf (x). Then the optimal condition gives

0 ∈ ∂f(u) + u− x

That is x− u ∈ ∂f(u). Then u ∈ ∂f∗(x− u). (Exercise!)
This is equivalent to

0 ∈ ∂f∗(x− u) + (x− u)− x

By considering the optimal condition for proxf∗ problem,

x− u = proxf∗(x)

Therefore, x = proxf (x) + proxf∗(x). Then extended case can be proved using
the simple version.

Remark:
Let’s consider the optimal condition for the proximal problem.

z = arg min
u
{f(u) +

1

2
‖x− u‖2}

⇔ 0 ∈ ∂f(x) + z − x
⇔ x ∈ (I + ∂f)(x)

Therefore, we also write z = (I+∂f)−1(x), which is called the resolvent operator
of ∂f .

4.3.3 Proximal point algorithm

Consider the problem
min f(x)

where f is convex but may not be differentiable.

Lemma: x∗ minimizes f if and only if

x∗ = proxf (x∗)

Therefore, a minimizer of f is also a fixed point of the proximal operator.

2

Proof. Suppose x∗ minimizes f , then

f(x) +
1

2
‖x− x∗‖2 ≥ f(x∗) = f(x∗) +

1

2
‖x∗ − x∗‖2

This shows that x∗ = proxf (x∗).
Suppose x∗ = proxf (x∗). Then by the optimal condition

0 ∈ ∂f(x∗) + x∗ − x∗

So 0 ∈ ∂f(x∗). Therefore, x∗ minimizes f .

This motivates the proximal point algorithm:

xk+1 := proxλf (xk)

If the proximal operator is a contraction, we can immediately prove the conver-
gence of this algorithm.
This may not be true in general. Nonetheless, the proximal operator has a dif-
ferent property that helps prove the convergence.

Proposition:(Firm nonexpansiveness) Given x1, x2, we have

‖proxf (x1)− proxf (x2)‖2 ≤ 〈proxf (x1)− proxf (x2), x1 − x2〉

In particular,
‖proxf (x1)− proxf (x2)‖ ≤ ‖x1 − x2‖

Given an nonexpansive operator N and α ∈ (0, 1), the operator

T := (1− α)I + αN

is called an averaged operator.
For averaged operator T , if it has a fixed point, then the iteration

xk+1 := T (xk)

will converge to a fixed point of T .
This is known as the Kranoselskii-Mann theorem.
In particular, the firmly nonexpansiveness operators are 1

2 -averaged.
Therefore, we can prove the convergence of proximal point algorithm using the
Kranoselskii-Mann theorem.

4.3.4 Proximal Gradient algorithm

Consider the optimization problem

minF (x) = f(x) + g(x)

3

where f is convex and differentiable, g is convex.
Suppose the proximal operator of g is simple, we consider the proximal gradient
algorithm:

xk+1 := proxtkg(x
k − tk∇f(xk))

This is also called the forward-backward splitting method.

To get convergence result, we assume that f is L-smooth.

Theorem: Suupose f is L-smooth and tk = 1
L . Then

F (xk)− F ∗ ≤ L

2k
‖x0 − x∗‖2

In other words, to get error less than ε, we need O(1
ε) iterations.

Similar to gradient descent, we can get faster convergence if we assume f is
also µ-strongly convex.
Theorem Suppose f is µ-strongly convex and L-smooth. Let tk = 1

L . Then

‖xk − x∗‖2 ≤
(
1− µ

L

)k‖x0 − x∗‖2
Therefore, we get linear convergence if f is also strongly convex.

Example: Consider the LASSO problem:

min
1

2
‖Ax− b‖22 + λ‖x‖1

Let f(x) = 1
2‖Ax− b‖

2
2, g(x) = λ‖x‖1.

Then ∇f(x) = AT (Ax− b). Recall that proxtg(x) = proxλ‖‖1(x) = Ttλ(x).
Therefore, the proximal gradient iteration for LASSO is

xk+1 = Ttλ(xk + tAT (Axk − b))

4.4 ADMM

4.4.1 Dual ascent

Recall that if strong duality holds, then the primal optimal value is equal to the
dual optimal value, that is

f(x∗) = g(λ∗, µ∗)

where x∗ (λ∗, µ∗) are primal (dual) optimal solution.
In particular x∗ ∈ arg minL(x, λ∗, µ∗).

Consider the the problem

min f(x) subject to Ax = b

4

The Lagrangian is L(x, µ) = f(x) + 〈µ,Ax− b〉
The dual function is given by

g(µ) = inf
x
L(x, µ)

To maximize the dual function, we consider gradient ascent

µk+1 = µk + tk∇g(µk)

∇g(µ0) = ∇µ inf
x
L(x, µ0) = ∇µ inf

x
(f(x) + 〈µ0, Ax− b〉)

Suppose x+ = arg min(f(x) + 〈µ0, Ax− b〉), then

∇g(µ0) = ∇µ(f(x+) + 〈µ0, Ax
+ − b〉) = Ax+ − b

We alternatively minimize L(x, µk), and then update µk. This leads to the
following algorithm:

xk+1 = arg min
x
L(x, µk)

µk+1 = µk + tk(Axk+1 − b)

Under some conditions (eg. f is strongly convex), this methods converges.
We can also generalize this to problems with inequality constraints.

Pros: Decomposability
Cons: Poor convergence properties

4.4.2 Augmented Lagrangian Method

Consider
min f(x) +

ρ

2
‖Ax− b‖2, subject to Ax = b

If ρ ≥ 0, this problem has the same set of solution as

min f(x) subject to Ax = b

This motivates the definition of the augmented Lagrangian, which is given by

Lρ(x, µ) = f(x) +
ρ

2
‖Ax− b‖2 + 〈µ,Ax− b〉

We try to apply this to the dual ascent algorithm.
Recall the KKT conditions for the original problem are

Ax∗ = b, ∇f(x∗) +ATµ∗ = 0

Since xk+1 = arg minLρ(x, µ
k), we have

0 = ∇xLρ(xk+1, µk)

= ∇f(xk+1) +AT (µk + ρ(Axk+1 − b))

5

If we choose ρ as the step size for updating µ, then we have ∇f(xk+1) +
ATµk+1 = 0.
Hence we get the following algorithm, which is called method of multipliers,

xk+1 = arg min
x
Lρ(x, µ

k)

µk+1 = µk + ρ(Axk+1 − b)
Pros: Better convergence properties
Cons: Not decomposable

4.4.3 ADMM

Consider the problem

min
x,z

f(x) + g(z) subject to Ax+Bz = c

The augmented Lagrangian is given by

Lρ(x, z, µ) = f(x) + g(z) + 〈µ,Ax+Bz − c〉+
ρ

2
‖Ax+Bz − c‖2

Instead of minimizing Lρ over x, z jointly, we split the minimization into 2 parts.
This is called the general ADMM algorithm, which is given by

xk+1 = arg min
x
Lρ(x, z

k, µk)

zk+1 = arg min
z
Lρ(x

k+1, z, µk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)
We can also consider the scaled version of ADMM. Let ν = 1

ρµ, then

Lρ(x, z, µ) = f(x) + g(z) + 〈µ,Ax+Bz − c〉+
ρ

2
‖Ax+Bz − c‖2

= f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ ν‖2 − ρ

2
‖ν‖2

Hence, we have the following scaled ADMM

xk+1 = arg min
x

(f(x) +
ρ

2
‖Ax+Bzk − c+ νk‖2)

zk+1 = arg min
z

(g(z) +
ρ

2
‖Axk+1 +Bz − c+ νk‖2)

νk+1 = νk +Axk+1 +Bzk+1 − c
We have good convergence properties for ADMM:
Assume f, g are closed,proper and convex and strong duality holds. Then:

1. Axk +Bzk − c→ 0.

2. f(xk) + g(z∗)→ p∗

3. µk → µ∗

6

4.4.4 Examples

Convex constraints
Consider

min
x∈C

f(x)

where C is a closed convex set.
We first transform the problem into ADMM form

min f(x) + g(z) subject to x− z = 0

where g is the indicator function of C
The z update is given by

zk+1 = arg min
z

(g(z) +
ρ

2
‖xk+1 − z + νk‖2) = PC(xk+1 + νk)

where PC(·) denotes the projection onto C.
Hence the ADMM iteration is give by

xk+1 = arg min
x
f(x) +

ρ

2
‖x− zk + νk‖2

zk+1 = PC(xk+1 + νk)

νk+1 = νk + xk+1 − zk+1

LASSO
Consider the l1-regularized least square problem:

min
x

1

2
‖Ax− b‖22 + λ‖x‖1

Again, we transform the problem into ADMM form

min
x,z

1

2
‖Ax− b‖22 + λ‖z‖1 subject to x− z = 0

We first consider the x update:

xk+1 = arg min
x

(
1

2
‖Ax− b‖22 +

ρ

2
‖x− zk + νk‖22)

This is equivalent to the least square problem

min
x

∥∥∥∥ [A√
ρI

]
x−

[
b√

ρ(zk − νk)

] ∥∥∥∥2
2

Hence

xk+1 = (ATA+ ρI)−1
[
AT
√
ρI
] [b√

ρ(zk − νk)

]
= (ATA+ ρI)−1(AT b+ ρ(zk − νk))

7

Now we consider the z update

zk+1 = arg min
z
λ‖z‖1 +

ρ

2
‖z − xk+1 − νk‖22

This problem is separable. Each component of zk+1 is given by

zk+1
i = arg min

y
λ|y|+ ρ

2
(y − xk+1

i − νki)2

We differentiate the objective function (let’s call it g(y))

g′(y) =

{
λ+ ρ(y − xk+1

i − νki) y > 0

−λ+ ρ(y − xk+1
i − νki) y < 0

If y∗ > 0, then y∗ = xk+1
i + νki − 1

ρλ, and this holds if xk+1
i + νki) > 1

ρλ.

If y∗ < 0, then y∗ = xk+1
i + νki + 1

ρλ, and this holds if xk+1
i + νki) < − 1

ρλ.

Lastly, if |xk+1
i + νki)| ≤ 1

ρλ, then y∗ = 0.

We denote this by Tλ/ρ(·) (Soft-thresholding operator)
Hence

zk+1 = Tλ/ρ(x
k+1 + νk)

Therefore, the ADMM iteration for LASSO is given by

xk+1 = (ATA+ ρI)−1(AT b+ ρ(zk − νk))

zk+1 = Tλ/ρ(x
k+1 + νk)

νk+1 = νk + xk+1 − zk+1

8

