Math4230 Exercise 7 Solution

1. (a)
$$f^*(y) = \begin{cases} -1 - \log(-y) & \text{if } y < 0 \\ \infty & \text{otherwise} \end{cases}$$

(b) $f^*(y) = \frac{1}{2}y^T Q^{-1}y$

2. (a)
$$f_1^*(y) = g^*(y-a) - b;$$

(b) $f_2^*(y) = b^T y + g^*(y).$

3. For $x \neq 0$, f is differentiable with $\nabla f(x) = \frac{x}{||x||}$. Hence $\partial f(x) = \{x/||x||\}$. For x = 0, if $f(y) \geq f(0) + \langle g, y \rangle$ for all y, then $||y|| \geq \langle g, y \rangle$, $\forall y$.

Let y = g, then $||g|| \le 1$, so $\partial f(0) \subset \{g| \ ||g|| \le 1\}$. Conversely, suppose $||g|| \le 1$, then

$$\langle g,y\rangle \leq ||g||||y|| \leq ||y||$$

Hence, $f(0) + \langle g, y \rangle \leq f(y)$. Therefore, $\{g | ||g|| \leq 1\} \subset \partial f(0)$.

4. Since $g_x \in \partial f(x)$,

$$f(y) \ge f(x) + \langle g_x, y - x \rangle$$

Similarly, since $g_y \in \partial f(y)$,

$$f(x) \ge f(y) + \langle g_y, x - y \rangle$$

Adding the two inequalities, we get

$$\langle g_x - g_y, x - y \rangle \ge 0$$