On subdifferential calculus *

Tieyong Zeng <u>zeng@math.cuhk.edu.hk</u> Feb, 2020 **Definition 2.30** Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a convex function and let $\bar{x} \in \text{dom } f$. An element $v \in \mathbb{R}^n$ is called a SUBGRADIENT of f at \bar{x} if

$$\langle v, x - \bar{x} \rangle \le f(x) - f(\bar{x}) \text{ for all } x \in \mathbb{R}^n.$$
 (2.13)

The collection of all the subgradients of f at \bar{x} is called the SUBDIFFERENTIAL of the function at this point and is denoted by $\partial f(\bar{x})$.

Subdifferential

the subdifferential $\partial f(x)$ of f at x is the set of all subgradients:

$$\partial f(x) = \{g \mid g^T(y - x) \le f(y) - f(x), \, \forall y \in \text{dom } f\}$$

Properties

- \$\partial f(x)\$ is a closed convex set (possibly empty)
 this follows from the definition: \$\partial f(x)\$ is an intersection of halfspaces
- if x ∈ int dom f then ∂ f(x) is nonempty and bounded
 proof on next two pages

Proof: we show that $\partial f(x)$ is nonempty when $x \in \operatorname{int} \operatorname{dom} f$

- (x, f(x)) is in the boundary of the convex set epi f
- therefore there exists a supporting hyperplane to epi f at (x, f(x)):

$$\exists (a,b) \neq 0, \qquad \begin{bmatrix} a \\ b \end{bmatrix}^T \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \qquad \forall (y,t) \in \operatorname{epi} f$$

- b > 0 gives a contradiction as $t \to \infty$
- b = 0 gives a contradiction for $y = x + \epsilon a$ with small $\epsilon > 0$

• therefore
$$b < 0$$
 and $g = \frac{1}{|b|}a$ is a subgradient of f at x

Proof: $\partial f(x)$ is bounded when $x \in \text{int dom } f$

• for small r > 0, define a set of 2n points

$$B = \{x \pm re_k \mid k = 1, \dots, n\} \subset \operatorname{dom} f$$

and define $M = \max_{y \in B} f(y) < \infty$

• for every $g \in \partial f(x)$, there is a point $y \in B$ with

$$r \|g\|_{\infty} = g^T (y - x)$$

(choose an index k with $|g_k| = ||g||_{\infty}$, and take $y = x + r \operatorname{sign}(g_k)e_k$)

• since g is a subgradient, this implies that

$$f(x) + r ||g||_{\infty} = f(x) + g^{T}(y - x) \le f(y) \le M$$

• we conclude that $\partial f(x)$ is bounded:

$$||g||_{\infty} \le \frac{M - f(x)}{r}$$
 for all $g \in \partial f(x)$

Definition 2.34 We say that $f : \mathbb{R}^n \to \mathbb{R}$ is (Fréchet) DIFFERENTIABLE at $\bar{x} \in int(dom f)$ if there exists an element $v \in \mathbb{R}^n$ such that

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x}) - \langle v, x - \bar{x} \rangle}{\|x - \bar{x}\|} = 0.$$

In this case the element v is uniquely defined and is denoted by $\nabla f(\bar{x}) := v$.

Proposition 2.35 Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex and let $\overline{x} \in \text{dom } f$. Then f attains its local/global minimum at \overline{x} if and only if $0 \in \partial f(\overline{x})$.

Proof. Suppose that f attains its global minimum at \bar{x} . Then

$$f(\bar{x}) \le f(x)$$
 for all $x \in \mathbb{R}^n$,

which can be rewritten as

$$0 = \langle 0, x - \bar{x} \rangle \le f(x) - f(\bar{x}) \text{ for all } x \in \mathbb{R}^n.$$

The definition of the subdifferential shows that this is equivalent to $0 \in \partial f(\bar{x})$.

Now we show that the subdifferential (2.13) is indeed a singleton for differentiable functions reducing to the classical derivative/gradient at the reference point and clarifying the notion of differentiability in the case of convex functions.

Proposition 2.36 Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex and differentiable at $\bar{x} \in int(dom f)$. Then we have $\partial f(\bar{x}) = \{\nabla f(\bar{x})\}$ and

$$\langle \nabla f(\bar{x}), x - \bar{x} \rangle \le f(x) - f(\bar{x}) \text{ for all } x \in \mathbb{R}^n.$$
 (2.17)

Proposition 2.36 Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex and differentiable at $\bar{x} \in int(dom f)$. Then we have $\partial f(\bar{x}) = \{\nabla f(\bar{x})\}$ and

$$\langle \nabla f(\bar{x}), x - \bar{x} \rangle \le f(x) - f(\bar{x}) \text{ for all } x \in \mathbb{R}^n.$$
 (2.17)

Proof. It follows from the differentiability of f at \bar{x} that for any $\epsilon > 0$ there is $\delta > 0$ with

$$-\epsilon \|x - \bar{x}\| \le f(x) - f(\bar{x}) - \langle \nabla f(\bar{x}), x - \bar{x} \rangle \le \epsilon \|x - \bar{x}\| \text{ whenever } \|x - \bar{x}\| < \delta.$$
(2.18)

Consider further the convex function

$$\varphi(x) := f(x) - f(\bar{x}) - \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \epsilon ||x - \bar{x}||, \quad x \in \mathbb{R}^n,$$

and observe that $\varphi(x) \ge \varphi(\bar{x}) = 0$ for all $x \in IB(\bar{x}; \delta)$. The convexity of φ ensures that $\varphi(x) \ge \varphi(\bar{x})$ for all $x \in \mathbb{R}^n$. Thus

$$\langle \nabla f(\bar{x}), x - \bar{x} \rangle \le f(x) - f(\bar{x}) + \epsilon ||x - \bar{x}||$$
 whenever $x \in \mathbb{R}^n$,

which yields (2.17) by letting $\epsilon \downarrow 0$.

It follows from (2.17) that $\nabla f(\bar{x}) \in \partial f(\bar{x})$. Picking now $v \in \partial f(\bar{x})$, we get

$$\langle v, x - \bar{x} \rangle \le f(x) - f(\bar{x}).$$

Then the second part of (2.18) gives us that

$$\langle v - \nabla f(\bar{x}), x - \bar{x} \rangle \le \epsilon ||x - \bar{x}||$$
 whenever $||x - \bar{x}|| < \delta$.

Finally, we observe that $||v - \nabla f(\bar{x})|| \le \epsilon$, which yields $v = \nabla f(\bar{x})$ since $\epsilon > 0$ was chosen arbitrarily. Thus $\partial f(\bar{x}) = \{\nabla f(\bar{x})\}$.

Example 2.38 Let p(x) := ||x|| be the Euclidean norm function on \mathbb{R}^n . Then we have

$$\partial p(x) = \begin{cases} IB & \text{if } x = 0, \\ \left\{\frac{x}{\|x\|}\right\} & \text{otherwise.} \end{cases}$$

To verify this, observe first that the Euclidean norm function p is differentiable at any nonzero point with $\nabla p(x) = \frac{x}{\|x\|}$ as $x \neq 0$. It remains to calculate its subdifferential at x = 0. To proceed by definition (2.13), we have that $v \in \partial p(0)$ if and only if

$$\langle v, x \rangle = \langle v, x - 0 \rangle \le p(x) - p(0) = ||x||$$
 for all $x \in \mathbb{R}^n$.

Letting x = v gives us $\langle v, v \rangle \le ||v||$, which implies that $||v|| \le 1$, i.e., $v \in IB$. Now take $v \in IB$ and deduce from the Cauchy-Schwarz inequality that

$$\langle v, x - 0 \rangle = \langle v, x \rangle \le ||v|| \cdot ||x|| \le ||x|| = p(x) - p(0)$$
 for all $x \in \mathbb{R}^n$

and thus $v \in \partial p(0)$, which shows that $\partial p(0) = IB$.

Theorem 2.40 Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a differentiable function on its domain *D*, which is an open convex set. Then *f* is convex if and only if

$$\langle \nabla f(u), x - u \rangle \le f(x) - f(u) \text{ for all } x, u \in D.$$
 (2.21)

Proof. The "only if" part follows from Proposition 2.36. To justify the converse, suppose that (2.21) holds and then fix any $x_1, x_2 \in D$ and $t \in (0, 1)$. Denoting $x_t := tx_1 + (1 - t)x_2$, we have $x_t \in D$ by the convexity of D. Then

$$\langle \nabla f(x_t), x_1 - x_t \rangle \le f(x_1) - f(x_t), \quad \langle \nabla f(x_t), x_2 - x_t \rangle \le f(x_2) - f(x_t).$$

It follows furthermore that

$$t \langle \nabla f(x_t), x_1 - x_t \rangle \le t f(x_1) - t f(x_t)$$
 and
 $(1-t) \langle \nabla f(x_t), x_2 - x_t \rangle \le (1-t) f(x_2) - (1-t) f(x_t).$

Summing up these inequalities, we arrive at

$$0 \le t f(x_1) + (1-t) f(x_2) - f(x_t),$$

which ensures that $f(x_t) \le t f(x_1) + (1-t) f(x_2)$, and so verifies the convexity of f.

Moreau-Rockafellar theorem

Corollary 2.45 Let $f_i : \mathbb{R}^n \to \overline{\mathbb{R}}$ for i = 1, 2 be convex functions such that there exists $u \in \text{dom } f_1 \cap \text{dom } f_2$ for which f_1 is continuous at u or f_2 is continuous at u. Then

$$\partial(f_1 + f_2)(x) = \partial f_1(x) + \partial f_2(x) \tag{2.28}$$

whenever $x \in \text{dom } f_1 \cap \text{dom } f_2$. Consequently, if both functions f_i are finite-valued on \mathbb{R}^n , then the sum rule (2.28) holds for all $x \in \mathbb{R}^n$.

Theorem 2.9 (Moreau-Rockafellar) Let $f, g : \mathbb{R}^n \to (-\infty, +\infty]$ be convex functions. Then for every $x_0 \in \mathbb{R}^n$

$$\partial f(x_0) + \partial g(x_0) \subset \partial (f+g)(x_0).$$

Moreover, suppose that int dom $f \cap \text{dom } g \neq \emptyset$. Then for every $x_0 \in \mathbb{R}^n$ also

 $\partial (f+g)(x_0) \subset \partial f(x_0) + \partial g(x_0).$

PROOF. The proof of the first part is elementary: Let $\xi_1 \in \partial f(x_0)$ and $\xi_2 \in \partial g(x_0)$. Then for all $x \in \mathbb{R}^n$

$$f(x) \ge f(x_0) + \xi_1^t(x - x_0), \ g(x) \ge g(x_0) + \xi_2^t(x - x_0),$$

so addition gives $f(x) + g(x) \ge f(x_0) + g(x_0) + (\xi_1 + \xi_2)^t (x - x_0)$. Hence $\xi_1 + \xi_2 \in \partial(f + g)(x_0)$.

To prove the second part, let $\xi \in \partial(f+g)(x_0)$. First, observe that $f(x_0) = +\infty$ implies $(f+g)(x_0) = +\infty$, whence $f+g \equiv +\infty$, which is impossible by $\xi \in \partial(f+g)(x_0)$. Likewise, $g(x_0) = +\infty$ is impossible. Hence, from now on we know that both $f(x_0)$ and $g(x_0)$ belong to \mathbb{R} . We form the following two sets in \mathbb{R}^{n+1} .

$$\Lambda_f := \{ (x - x_0, y) \in \mathbb{R}^n \times \mathbb{R} : y > f(x) - f(x_0) - \xi^t (x - x_0) \}$$
$$\Lambda_g := \{ (x - x_0, y) : -y \ge g(x) - g(x_0) \}.$$

$$\Lambda_f := \{ (x - x_0, y) \in \mathbb{R}^n \times \mathbb{R} : y > f(x) - f(x_0) - \xi^t (x - x_0) \}$$
$$\Lambda_g := \{ (x - x_0, y) : -y \ge g(x) - g(x_0) \}.$$

Observe that both sets are nonempty and convex (see Exercise 2.8), and that $\Lambda_f \cap \Lambda_g = \emptyset$ (the latter follows from $\xi \in \partial(f+g)(x_0)$). Hence, by the set-set-separation Theorem A.4, there exists $(\xi_0, \mu) \in \mathbb{R}^{n+1}$ and $\alpha \in \mathbb{R}$, $(\xi_0, \mu) \neq (0, 0)$, such that

$$\xi_0^t(x - x_0) + \mu y \le \alpha$$
 for all (x, y) with $y > f(x) - f(x_0) - \xi^t(x - x_0)$,

$$\xi_0^t(x - x_0) + \mu y \ge \alpha \text{ for all } (x, y) \text{ with } -y \ge g(x) - g(x_0).$$

By $(0,0) \in \Lambda_g$ we get $\alpha \leq 0$. But also $(0,\epsilon) \in \Lambda_f$ for every $\epsilon > 0$, and this gives $\mu \epsilon \leq \alpha$, so $\mu \leq 0$ (take $\epsilon = 1$). In the limit, for $\epsilon \to 0$, we find $\alpha \geq 0$. Hence $\alpha = 0$ and $\mu \leq 0$. We now claim that $\mu = 0$ is impossible. Indeed, if one had $\mu = 0$, then the first of the above two inequalities would give

$$\xi_0^t(x - x_0) \le 0$$
 for all (x, y) with $y > f(x) - f(x_0) - \xi^t(x - x_0)$,

which is equivalent to

$$\xi_0^t(x-x_0) \le 0$$
 for all $x \in \text{dom } f$

(simply note that when $f(x) < +\infty$ one can always achieve $y > f(x) - f(x_0) - \xi^t(x - x_0)$ by choosing y sufficiently large). Likewise, the second inequality would give

$$\xi_0^t(x-x_0) \ge 0$$
 for all $x \in \text{dom } g$.

In particular, for \tilde{x} as above this would imply $\xi_0^t(\tilde{x} - x_0) = 0$. But since \tilde{x} lies in the interior of dom f (so for some $\delta > 0$ the ball $N_{\delta}(\tilde{x})$ belongs to dom f), the preceding would imply

$$\xi_0^t u = \xi_0^t (\tilde{x} + u - x_0) \le 0$$
 for all $u \in N_\delta(0)$.

Clearly, this would give $\xi_0 = 0$ (take $u := \delta \xi_0/2$), which would be in contradiction to $(\xi_0, \mu) \neq (0, 0)$. Hence, we conclude $\mu < 0$. Dividing the separation inequalities by $-\mu$ and setting $\overline{\xi}_0 := -\xi_0/\mu$, this results in

$$\bar{\xi}_0^t(x - x_0) \le y$$
 for all (x, y) with $y > f(x) - f(x_0) - \xi^t(x - x_0)$,
 $\bar{\xi}_0^t(x - x_0) \ge y$ for all (x, y) with $-y \ge g(x) - g(x_0)$.

The last inequality gives $-\bar{\xi}_0 \in \partial g(x_0)$ (set $y := g(x_0) - g(x)$) and the one but last inequality gives $\xi + \bar{\xi}_0 \in \partial f(x_0)$ (take $y := f(x) - f(x_0) - \xi^t(x - x_0) + \epsilon$ and let $\epsilon \downarrow 0$). Since $\xi = (\xi + \bar{\xi}_0) - \bar{\xi}_0$, this finishes the proof. QED As a precursor to the Karush-Kuhn-Tucker theorem, we have now the following application of the Moreau-Rockafellar theorem.

Theorem 2.10 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function and let $S \subset \mathbb{R}^n$ be a nonempty convex set. Consider the optimization problem

$$(P) \quad \inf_{x \in S} f(x).$$

Then $\bar{x} \in S$ is an optimal solution of (P) if and only if there exists a subgradient $\bar{\xi} \in \partial f(\bar{x})$ such that

$$\bar{\xi}^t(x - \bar{x}) \ge 0 \text{ for all } x \in S.$$
(1)

PROOF. Recall from Definition 2.3 that χ_S is the indicator function of S. Now let $\bar{x} \in S$ be arbitrary. Then the following is trivial: \bar{x} is an optimal solution of (P) if and only if

$$0 \in \partial (f + \chi_S)(\bar{x}).$$

By the Moreau-Rockafellar Theorem 2.9, we have

$$\partial (f + \chi_S)(\bar{x}) = \partial f(\bar{x}) + \partial \chi_S(\bar{x}).$$

To see that its conditions hold, observe that dom $f = \mathbb{R}^n$ and dom $\chi_S = S$. So it follows that \bar{x} is an optimal solution of (P) if and only if $0 \in \partial f(\bar{x}) + \partial \chi_S(\bar{x})$. By the definition of the sum of two sets this means that \bar{x} is an optimal solution of (P)if and only if $0 = \bar{\xi} + \bar{\xi}'$ for some $\bar{\xi} \in \partial f(\bar{x})$ and $\bar{\xi}' \in \partial \chi_S(\bar{x})$. Of course, the former means $\bar{\xi}' = -\bar{\xi}$, so $-\bar{\xi} \in \partial \chi_S(\bar{x})$, which is equivalent to

$$\chi_S(x) \ge \chi_S(\bar{x}) + (-\bar{\xi})^t (x - \bar{x}) \text{ for all } x \in \mathbb{R}^n,$$

i.e., to (1). QED

Definition 2.13 The *directional derivative* of a convex function $f : \mathbb{R}^n \to (-\infty, +\infty]$ at the point $x_0 \in \text{dom} f$ in the direction $d \in \mathbb{R}^n$ is defined as

$$f'(x_0; d) := \lim_{\lambda \downarrow 0} \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda}.$$

The above limit is a well-defined number in $[-\infty, +\infty]$. This follows from the following proposition (why?), which shows that the difference quotients of a convex functions possess a monotonicity property: **Proposition 2.14** Let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be a convex function and let x_0 be a point in dom f. Then for every direction $d \in \mathbb{R}^n$ and every $\lambda_1, \lambda_2 \in \mathbb{R}$ such that $\lambda_2 > \lambda_1 > 0$ we have

$$\frac{f(x_0 + \lambda_1 d) - f(x_0)}{\lambda_1} \le \frac{f(x_0 + \lambda_2 d) - f(x_0)}{\lambda_2}$$

PROOF. Note that

$$x_0 + \lambda_1 d = \frac{\lambda_1}{\lambda_2} (x_0 + \lambda_2 d) + (1 - \frac{\lambda_1}{\lambda_2}) x_0.$$

So by convexity of f

$$f(x_0 + \lambda_1 d) \le \frac{\lambda_1}{\lambda_2} f(x_0 + \lambda_2 d) + (1 - \frac{\lambda_1}{\lambda_2}) f(x_0).$$

Simple algebra shows that this is equivalent to the desired inequality. QED

Theorem 2.15 Let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be a convex function and let x_0 be a point in int dom f. Then

$$f'(x_0; d) = \sup_{\xi \in \partial f(x_0)} \xi^t d \text{ for every } d \in \mathbb{R}^n.$$

PROOF OF THEOREM 2.15. By Proposition 2.14

$$q(d) := f'(x_0; d) := \lim_{\lambda \downarrow 0} \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda} = \inf_{\lambda > 0} \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda}.$$

Since the pointwise limit of a sequence of convex functions is convex, it follows that $q: \mathbb{R}^n \to \mathbb{R}$ is convex (by the infimum expression for q(d) the fact that $x_0 \in$ int dom f implies automatically $q(d) < +\infty$ for every d; also, $q(d) > -\infty$ for every d, because of the nonemptiness part of Lemma 2.16). Hence, q is continuous at every point $d \in \mathbb{R}^n$ (apply the continuity part of Lemma 2.16). So by the Fenchel-Moreau theorem (Theorem B.5 in the Appendix) we have for every d

$$q(d) = q^{**}(d) := \sup_{\xi \in \mathbb{R}^n} [d^t \xi - q^*(\xi)].$$

Let us calculate q^* . For any $\xi \in \mathbb{R}^n$ we have

$$q^{*}(\xi) := \sup_{d \in \mathbb{R}^{n}} [\xi^{t} d - q(d)] = \sup_{d, \lambda > 0} [\xi^{t} d - \frac{f(x_{0} + \lambda d) - f(x_{0})}{\lambda}] = \sup_{\lambda > 0} \sup_{d} [\xi^{t} d - \frac{f(x_{0} + \lambda d) - f(x_{0})}{\lambda}]$$

by the above infimum expression for q(d). Fix $\lambda > 0$; then $z := x_0 + \lambda d$ runs through all of \mathbb{R}^n as d runs through \mathbb{R}^n . Hence

$$\sup_{d} [\xi^{t}d - \frac{f(x_{0} + \lambda d) - f(x_{0})}{\lambda}] = \frac{f(x_{0}) - \xi^{t}x_{0} + \sup_{z} [\xi^{t}z - f(z)]}{\lambda}.$$

Clearly, this gives

$$q^*(\xi) = \sup_{\lambda>0} \frac{f(x_0) - \xi^t x_0 + f^*(\xi)}{\lambda} = \begin{cases} 0 & \text{if } \xi \in \partial f(x_0) \\ +\infty & \text{otherwise} \end{cases}$$

where we use Proposition B.4(v). Observe that in terms of the indicator function of the subdifferential this can be rewritten as $q^* = \chi_{\partial f(x_0)}$. Now that q^* has been calculated, we conclude from the above that for every $d \in \mathbb{R}^n$

$$f'(x_0; d) = q(d) = q^{**}(d) = \chi^*_{\partial f(x_0)}(d) = \sup_{\xi \in \partial f(x_0)} \xi^t d,$$

which proves the result. QED

Proposition 2.54 Let $f_i: \mathbb{R}^n \to \overline{\mathbb{R}}$, i = 1, ..., m, be convex functions. Take any point $\bar{x} \in \bigcap_{i=1}^m \text{dom } f_i \text{ and assume that each } f_i \text{ is continuous at } \bar{x}$. Then we have the maximum rule

 $\partial (\max f_i)(\bar{x}) = \operatorname{co} \bigcup_{i \in I(\bar{x})} \partial f_i(\bar{x}).$

Theorem 2.17 (Dubovitskii-Milyutin) Let $f_1, \dots, f_m : \mathbb{R}^n \to (-\infty, +\infty]$ be convex functions and let x_0 be a point in $\bigcap_{i=1}^m$ int dom f_i . Let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be given by

$$f(x) := \max_{1 \le i \le m} f_i(x)$$

and let $I(x_0)$ be the (nonempty) set of all $i \in \{1, \dots, m\}$ for which $f_i(x_0) = f(x_0)$. Then

$$\partial f(x_0) = \operatorname{co} \cup_{i \in I(x_0)} \partial f_i(x_0).$$

PROOF. For our convenience we write $I := I(x_0)$. To begin with, observe that $\xi \in \partial f_i(x_0)$ easily implies $\xi \in \partial f(x_0)$ for each $i \in I$. Since $\partial f(x_0)$ is evidently convex, the inclusion " \supset " follows with ease. To prove the opposite inclusion, let ξ_0 be arbitrary in $\partial f(x_0)$. If ξ_0 were not to belong to the compact set co $\bigcup_{i \in I} \partial f_i(x_0)$, then we could separate strictly (note that each set $\partial f_i(x_0)$ is both closed and compact (exercise)): by Theorem A.2 there would exist $d \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ such that

$$\xi_0^t d > \alpha \ge \max_{i \in I} \sup_{\xi \in \partial f_i(x_0)} \xi^t d = \max_{i \in I} f_i'(x_0; d),$$

where the final identity follows from Theorem 2.15. But now observe that

$$f'(x_0;d) := \lim_{\lambda \downarrow 0} \max_{i \in I} \frac{f_i(x_0 + \lambda d) - f_i(x_0)}{\lambda} = \max_{i \in I} \lim_{\lambda \downarrow 0} \frac{f_i(x_0 + \lambda d) - f_i(x_0)}{\lambda} = \max_{i \in I} f'_i(x_0;d),$$

so the above gives $\xi_0^t d > f'(x_0; d)$. On the other hand, by $\xi_0 \in \partial f(x_0)$ it follows that $f(x_0 + \lambda d) \ge f(x_0) + \lambda \xi_0^t d$ for every $\lambda > 0$, whence $f'(x_0; d) \ge \xi_0^t d$. We thus have arrived at a contradiction. So the inclusion " \subset " must hold as well. QED

Directional derivative

Definition (for general f): the *directional derivative* of f at x in the direction y is

$$f'(x; y) = \lim_{\alpha \searrow 0} \frac{f(x + \alpha y) - f(x)}{\alpha}$$
$$= \lim_{t \to \infty} \left(t(f(x + \frac{1}{t}y) - tf(x)) \right)$$

(if the limit exists)

- f'(x; y) is the right derivative of $g(\alpha) = f(x + \alpha y)$ at $\alpha = 0$
- f'(x; y) is homogeneous in y:

$$f'(x; \lambda y) = \lambda f'(x; y) \text{ for } \lambda \ge 0$$

Directional derivative of a convex function

Equivalent definition (for convex f): replace lim with inf

$$f'(x; y) = \inf_{\alpha > 0} \frac{f(x + \alpha y) - f(x)}{\alpha}$$
$$= \inf_{t > 0} \left(t f(x + \frac{1}{t}y) - t f(x) \right)$$

Proof

- the function h(y) = f(x + y) f(x) is convex in y, with h(0) = 0
- its perspective th(y/t) is nonincreasing in t (ECE236B ex. A2.5); hence

$$f'(x; y) = \lim_{t \to \infty} th(y/t) = \inf_{t > 0} th(y/t)$$

Properties

consequences of the expressions (for convex f)

$$f'(x; y) = \inf_{\alpha > 0} \frac{f(x + \alpha y) - f(x)}{\alpha}$$
$$= \inf_{t > 0} \left(t f(x + \frac{1}{t}y) - t f(x) \right)$$

- f'(x; y) is convex in y (partial minimization of a convex function in y, t)
- f'(x; y) defines a lower bound on f in the direction y:

$$f(x + \alpha y) \ge f(x) + \alpha f'(x; y)$$
 for all $\alpha \ge 0$

Directional derivative and subgradients

for convex f and $x \in \operatorname{int} \operatorname{dom} f$

- generalizes $f'(x; y) = \nabla f(x)^T y$ for differentiable functions
- implies that f'(x; y) exists for all $x \in int \text{ dom } f$, all y (see page 2.4)

Proof: if $g \in \partial f(x)$ then from page 2.29

$$f'(x; y) \ge \inf_{\alpha > 0} \frac{f(x) + \alpha g^T y - f(x)}{\alpha} = g^T y$$

it remains to show that $f'(x; y) = \hat{g}^T y$ for at least one $\hat{g} \in \partial f(x)$

- f'(x; y) is convex in y with domain \mathbf{R}^n , hence subdifferentiable at all y
- let \hat{g} be a subgradient of f'(x; y) at y: then for all $v, \lambda \ge 0$,

$$\lambda f'(x;v) = f'(x;\lambda v) \ge f'(x;y) + \hat{g}^T(\lambda v - y)$$

• taking $\lambda \to \infty$ shows that $f'(x; v) \ge \hat{g}^T v$; from the lower bound on page 2.30,

$$f(x+v) \ge f(x) + f'(x;v) \ge f(x) + \hat{g}^T v \quad \text{for all } v$$

hence $\hat{g} \in \partial f(x)$

• taking $\lambda = 0$ we see that $f'(x; y) \le \hat{g}^T y$