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Definition 2.30  Lef f : R" — R be a convex function and let X € dom f. An element v € R is
called a SUBGRADIENT of f af X if

(v.x—=X) < f(x) = f(x) forall x € R". (2.13)

The collection of all the subgradients of f at X is called the SUBDIFFERENTIAL of the function at this
point and is denoted by 0f (X).



Subdifferential

the subdifferential 0 f(x) of f at x is the set of all subgradients:

0f(x)={g ¢ (vy=x) < f() = f(x). Yy € dom f}

Properties

e O f(x)is aclosed convex set (possibly empty)

this follows from the definition: 0 f(x) is an intersection of halfspaces

e if x € intdom f then 0 f(x) is nonempty and bounded

proof on next two pages



Proof: we show that d f(x) is nonempty when x € intdom f

e (x, f(x))is in the boundary of the convex set epi f

therefore there exists a supporting hyperplane to epi f at (x, f(x)):

al’ y X
swosn 3] (3]Li

b > 0 gives a contradiction as t — oo

) <0 V(n)eepif

b = 0 gives a contradiction for y = x + ea with small € > 0

1
therefore b < 0 and g = ma is a subgradient of f at x
)



Proof: d f(x) is bounded when x € intdom f

e for small r > 0, define a set of 2n points
B={xxre, | k=1,...,n} Ccdomf
and define M = max f(y) < oo
yeB
e for every g € df(x), there is a point y € B with
rligleo = " (v = %)

(choose an index k with |gx| = ||g||e, and take y = x + r sign(gy)ex)

e since g is a subgradient, this implies that

f)+rligle = fF)+eT(y-x)< fF() < M

e we conclude that d f(x) is bounded:

g lleo < M_’—f(‘) for all g € a9 f(x)



Definition2.34  Wesay that f : R" — R is (Fréchef) DIFFERENTIABLE af X € int(dom f') if there
extists an element v € R" such that

i ) = f(&) — (v, x — &)

= 0.
x—% Ix — x|

In this case the element v is uniquely defined and is denoted by V f(x) := v.



Proposition 2.35  Let f : R" — R be convex and let X € dom f. Then f attains its local/global
minimum at X if and only if 0 € 9f (X).
Proof. Suppose that f attains its global minimum at X. Then
f(X) < f(x) forall x € R",
which can be rewritten as
0=(0,x—x) < f(x)— f(x) forall x e R".

'The definition of the subdifferential shows that this is equivalent to 0 € 3f(x). O



Now we show that the subdifferential (2.13) is indeed a singleton for differentiable func-
tions reducing to the classical derivative/gradient at the reference point and claritying the notion
of differentiability in the case of convex functions.

Proposition2.36  Let f : R" — R be convex and differentiable at X € int(dom f). Then we have
Af (x) ={Vf(x)} and
(VI(x).x —x) < f(x)— f(x) forall x € R". (2.17)



Proposition2.36  Let f : R” — R be convex and differentiable at X € int(dom f'). Then we have
Af (x) ={V f(x)} and
(Vf(X).x = x) < f(x)— f(x) forall x € R". (2.17)

Proof. It tollows from the differentiability of f at x that for any € > 0 there is § > 0 with
—elx — %[ < f(x) = f(&) — (VF(F),x — %) < e|x —%| whenever [|x —%| <§. (2.18)
Consider further the convex function
¢(x) = f(x) = f(x) = (Vf(X).x =X) +€lx —x]. xeR",

and observe that ¢(x) > ¢(x) = 0 for all x € IB(x:8). The convexity of ¢ ensures that ¢(x) >
@(x) for all x € R". Thus

(Vf(x).x —Xx) < f(x)— f(X) + €]]x — X|| whenever x € R",

which yields (2.17) by letting € | 0.
It follows from (2.17) that V f(x) € df(x). Picking now v € 9f(x), we get

(v.x = X) = f(x) = f(x).
Then the second part of (2.18) gives us that
(v—=Vf(x),x —X) < €|]x — x| whenever |[x —x| < 4.

Finally, we observe that ||[v — V f(X)|| < €, which yields v = V f(X) since € > 0 was chosen ar-

bitrarily. Thus af (¥) = {V f(x)}. O



Example 2.38 Let p(x) := ||x| be the Euclidean norm function on R”. Then we have

IB if x=0,

ap(x) = X .
P(x) {—} otherwise.
[l
o verify this, observe first that the Euclidean norm function p is differentiable at any nonzero
T this, ob first that the Euclid function p is differentiable at any
pointwith Vp(x) = — asx # 0. It remains to calculate its subdifferential at x = 0. To proceed

x|
by definition (2.13), we have that v € dp(0) if and only if

(v,x) = (v,x —0) < p(x) — p(0) = ||x]|| forall x e R".

Letting x = v gives us (v, v) < |v||, which implies that |[v|| < 1, i.e., v € IB. Now take v € IB
and deduce from the Cauchy-Schwarz inequality that

(v.x = 0) = (v.x) < v - [Ix] = lIx]| = p(x) = p(0) forall x € R"

and thus v € dp(0), which shows that dp(0) = IB.



Theorem2.40  Let f : R” — R be a differentiable function on its domain D, which is an open
convex set. Then f is convex if and only if

(Vf(u),x —u) < f(x)— f(u) forall x,u € D. (2.21)

Proof. 'The “only if” part follows from Proposition 2.36. To justify the converse, suppose that
(2.21) holds and then fixany x;,x2 € D and 7 € (0. 1). Denoting x; := tx; + (1 —#)x2, we have
x; € D by the convexity of D. Then

(Vo). xi—xi) = flx) = fxo). (V(xe).x2—x1) = fx2) = fxo).

It follows furthermore that

t(Vf(xe).x1—x¢) <tf(x1)—1tf(x;) and
(I =)V f(x).x2—x;) = (I —=1)f(x2) = (1 =1) f(x;).

Summing up these inequalities, we arrive at

0=<1f(xr) + (I=1)f(x2) = fx0),

which ensures that f(x;) <7f(x1) + (1 —1) f(x2), and so verifies the convexity of f. O



Moreau-Rockafellar theorem

Corollary 245  Let f; :R" — R for i = 1,2 be convex functions such that there exists u €
dom f) Ndom f, for which f is continuous at u or f> is continuous at u. Then

I(f1 + f2)(x) = 3f1(x) + 9f2(x) (2.28)

whenever x € dom fi N dom f,. Consequently, if both functions f; are finite-valued on R", then the
sum rule (2.28) holds for all x € R".



Theorem 2.9 (Moreau-Rockafellar) Let f,g: R" — (—o0, +oc]| be convexr func-
tions. Then for every ro € R”

df(xo) + dg(xo) C O(f + g)(x0).
Moreover, suppose that int dom f Ndom g # ). Then for every xo € R™ also

I(f +g)(xo) C If(x0) + Ig(x0).



PRrROOF. The proof of the first part is elementary: Let & € 0f(x¢) and & € dg(xp).
Then for all x € R

f(z) = flzo) + 5{(;17 — x0), 9() = g(zo) + {;(;17 — 0).

so addition gives f(x) + g(z) = f(xo) + g(x0) + (&1 + &) (x — x0). Hence & + & €
A(f + 9)(x0).

To prove the second part, let £ € I(f + g)(xg). First, observe that f(zg) = +o0
mmplies (f + g)(xp) = +0o0, whence f + g = 400, which is impossible by £ € O(f +
g)(xp). Likewise, g(xg) = 400 is impossible. Hence, from now on we know that both
f(x0) and g(xg) belong to R. We form the following two sets in R**1,

Ap={(x —z0,y) ER"xR:y > f(x) — flxg) — &(x — x0) }

Ay = {(z = 70,) : —y > g(z) — g(z0)}.



Ap={(z—z0,y) ER"xR:y > f(z) — fxg) — & (x — x0)}

ANy ={(z —z0.y): —y > g(z) — g(x0) }.

Observe that both sets are nonempty and convex (see Exercise 2.8), and that Ag N
A, = 0 (the latter follows from & € O(f + g)(xp)). Hence, by the set-set-separation
Theorem A .4, there exists (&, 1) € R" and a € R, (&. i) # (0.0). such that

&(x —x9) + py < a for all (z,y) with y > f(z) — f(xg) — &(x — xp),

&(x — x0) + py > a for all (z,y) with —y > g(x) — g(xo).

By (0,0) € Ay we get @ < 0. But also (0,€¢) € Ay for every € > 0, and this gives
pe < v, so < 0 (take e = 1). In the limit, for € — 0, we find @ > 0. Hence a =0
and g < 0. We now claim that g = 0 1s impossible. Indeed, if one had g = 0, then
the first of the above two mequalities would give

&z —0) <0 for all (z,y) with y > f(x) — f(z0) — & (z — x0).



which 1s equivalent to
&(x — ) <0 for all x € dom f

(simply note that when f(z) < 400 one can always achieve y > f(x)— f(xo) — & (x —
xg) by choosing y sufficiently large). Likewise, the second inequality would give

&(x —x0) > 0 for all x € dom g.

In particular, for & as above this would imply &§(z — x¢) = 0. But since = lies in the
mterior of dom f (so for some 6 > 0 the ball Nsj(z) belongs to dom f), the preceding
would 1mply

Eou = &6(Z +u — x0) < 0 for all u € N5(0).

Clearly, this would give {y = 0 (take u := 0&p/2), which would be in contradiction to
(&0, pt) # (0,0). Hence, we conclude g < 0. Dividing the separation inequalities by
—pt and setting &y := —&p/pt, this results in

&o(x — o) <y for all (x,y) with y > f(z) — f(xo) — £z — x0),

& (x — x9) = y for all (z,y) with —y > g(z) — g(x0).

The last inequality gives —&o € dg(xg) (set y := g(x0) — g(x)) and the one but last
nequality gives {+& € Of(xo) (take y := f(x) — f(zo) —&"(x —x0) +€ and let € | 0).
Since £ = (£ + &) — &, this finishes the proof. QED



As a precursor to the Karush-Kuhn-Tucker theorem. we have now the following
application of the Moreau-Rockafellar theorem.

Theorem 2.10 Let f: R™ — R be a convex function and let S C R™ be a nonempty
convex set. Consider the optimization problem

(P) inf f(x).

xreS

Then = € S s an optimal solution of (P) if and only if there exists a subgradient

£ € 0f(x) such that

E(r—2z)>0 forallzes. (1)



Proor. Recall from Definition 2.3 that yg 1s the mdicator function of S. Now
let # € S be arbitrary. Then the following is trivial: z is an optimal solution of (P)
if and only 1if

0 €d(f +xs)(T).

By the Moreau-Rockafellar Theorem 2.9, we have

I f +xs)(x) = 0f(Z) + Oxs(T).

To see that i1ts conditions hold, observe that dom f = R™ and dom yg = 5. So it
follows that z is an optimal solution of (P) if and only if 0 € df(x) + d\s(Z). By
the definition of the sum of two sets this means that z is an optimal solution of (P)
if and only if 0 = & + &' for some & € df (%) and & € dys(z). Of course, the former
means & = —¢, so —& € dxg(Z), which is equivalent to

Ys(z) > xs(z) + (=€) (x — 7) for all z € R,
Le., to (1). QED



Definition 2.13 The directional derivative of a convex function f : R” — (—oc, +oc]
at the pomt rg € domf in the direction d € R" 1s defined as

. flxo+ Ad) — f(xo)
oo ) o
fizo:d) = lﬁl& ) :

The above limit is a well-defined number in [—o0, +00]. This follows from the fol-
lowing proposition (why?), which shows that the difference quotients of a convex
functions possess a monotonicity property:



Proposition 2.14 Let f : R" — (=00, +oc] be a convex function and let xo be a
point in domf. Then for every direction d € R™ and every A\, s € R such that
Ao > A\ > 0 we have

f(xo + Aid) — f(z0) - f(xg + Aad) — f(xo)

A1 - Ao
Proor. Note that
A A
I + /\1([ = —1(170 + /\2(1) + (1 — —1)170.
Ao A9
So by convexity of f
A1 A1
flxo+ Md) < )\—Qf(;l‘o + Aod) + (1 — )\—Q)f(;l70).

Simple algebra shows that this 1s equivalent to the desired mequality. QED



Theorem 2.15 Let f: R" — (—o0, +o0| be a convex function and let xy be a point
in int dom f. Then

f(xo:d) = sup &'d for every d € R™.
£ f(xo)



Proor or THEOREM 2.15. By Proposition 2.14

a(d) = f(z0;d) = lim T FAD = J@0) _,\ J@o+Ad) = (o)

210 A A>0 A

Since the pointwise limit of a sequence of convex functions i1s convex, i1t follows that
q : R" — R is convex (by the infimum expression for ¢(d) the fact that z¢ € int dom f
immplies automatically ¢(d) < +oc for every d; also, ¢(d) > —oc for every d, because
of the nonemptiness part of Lemma 2.16). Hence. ¢ is continuous at every point
d € R™ (apply the continuity part of Lemma 2.16). So by the Fenchel-Moreau theorem
(Theorem B.5 in the Appendix) we have for every d

q(d) = ¢**(d) := sup[d'¢ — ¢*(&)].

£eR"

Let us calculate ¢*. For any £ € R™ we have

q* (&) := sup ['d—q(d)] = sup [¢'d— f(wo+2d) = f(IO)] = sup sup|[&'d— f(zo+2d) = f(IO)]
deRn dA>0 A AS0 d A




by the above infimum expression for ¢(d). Fix A > 0; then 2z := 29 4+ Ad runs through
all of R™ as d runs through R". Hence

f(xo+ M) = f(xo),  f(xo) = &ag +sup,[§z — f(2)]
A 1= A '

sup[&fd —
d

Clearly, this gives

(e — o S
q = sup — i
() ,\>IO A +o0  otherwise

fxo) — &z + f*(€) { 0 if £ € df(xo)

where we use Proposition B.4(v). Observe that in terms of the indicator function
of the subdifferential this can be rewritten as ¢* = \pf(z,). Now that ¢* has been
calculated, we conclude from the above that for every d € R"

F'(w0:d) = g(d) = 4" (d) = Ny (d) = sup &',
£€0f(xo)

which proves the result. QED



Proposition 2.54  Ler fi:R" — R, i=1,....m, be convex functions. Take any point X €
e, dom f; and assume that each f; is continuous at X. Then we have the maximum rule

i=1
d(max £;)(¥) = co | J 3fi(®).

iel(X)



Theorem 2.17 (Dubovitskii-Milyutin) Let fi,- -, fi, : R" — (=00, +00] be con-
vex functions and let xo be a point in N int dom f;. Let f : R™ — (—o0, +00] be
given by

f(z) = max f;(x)

1<i<im

and let 1(xg) be the (nonempty) set of all i € {1,---,m} for which f;(xo) = f(x0).
Then

df(x0) = co User(z) Ofi(T0).



PrROOF. For our convenience we write [ := [(xg). To begin with, observe that
& € Jfi(xg) easily implies £ € Of(xg) for each @ € I. Since df(xg) 1s evidently
convex, the inclusion "27 follows with ease. To prove the opposite inclusion, let &
be arbitrary in df(zg). If {§ were not to belong to the compact set co U;er Of;(x0),
then we could separate strictly (note that each set df;(zq) is both closed and compact
(exercise)): by Theorem A.2 there would exist d € R™ and a € R such that

&d > a >max sup  £'d = max f(xo: d),
i€l ¢eofi(xo) el

where the final 1dentity follows from Theorem 2.15. But now observe that

f(zg:d) := lim max fizo + Ad) = Jilxo) = max lim fi(wo + Ad) — filxo)
A0 il A iel A0 \

= max f; (xo; d),
iel

so the above gives &{d > f'(xg;d). On the other hand, by & € df(x¢) it follows that
flzo + Ad) = f(xo) + Ad for every X > 0, whence f'(zg;d) > &fd. We thus have
arrived at a contradiction. So the inclusion "C” must hold as well. QED



Directional derivative

Definition (for general f): the directional derivative of f at x in the direction y is

f'(x:y) = lim flx +ay) - f(¥)

a\0 @
= Jim (70 ) =17
(if the limit exists)
e f’(x:y)is the right derivative of g(a) = f(x + ay)ata =0
e f’(x:y)is homogeneous in y:

f(x:Ay)=Af(x:y) forda =0



Directional derivative of a convex function

Equivalent definition (for convex f): replace lim with inf

f'(x:y) = inf flx+ay) - f(x)

a>0 [0

= nf £+ 1) =17 )

Proof
e the function i(y) = f(x + y) — f(x) is convex in y, with 2(0) = 0

e its perspective th(y/t) is nonincreasing in t+ (ECE236B ex. A2.5); hence

f'(x:y) = lim th(y/t) = infth(y/t)
t—oo >0



Properties

consequences of the expressions (for convex f)

inf f(x+ay)— f(x)

a>0 o

fllaey) =

= ,”Q(t) t f(.\'+%_\‘)—f fx)

e f’(x:y)is convexin y (partial minimization of a convex function in y, 7)
e f’(x:y)defines a lower bound on f in the direction y:

f(x+ay)=> f(x)+af'(x:y) foralla >0



Directional derivative and subgradients

for convex f and x € intdom f

fxiy)= sup gly
gedf(x)

fry)=g"y

f’(x: ) is support function of d f(x)
y af(x)

~

e generalizes f’(x:y) = V f(x)!y for differentiable functions

e implies that f/(x: y) exists for all x € intdom f, all y (see page 2.4)



Proof: if g € 0 f(x) then from page 2.29

Flacy) > inf SO+ a8ly = ()

T
=gy
0 o

it remains to show that f"(x:y) = g"Ty for at leastone ¢ € 9 f(x)
e f’(x:y)is convex in y with domain R”, hence subdifferentiable at all y
e let ¢ be a subgradient of f’(x: y) at y: then for all v, A > 0,
Af'(x:0) = fF(x:A0) > F(xiy)+ 8 (o —y)
e taking A — oo shows that f’(x:v) > gTu; from the lower bound on page 2.30,
fx+0) > fF(x)+ f(x:0) > f(x)+ 8o forallv
hence ¢ € df(x)

e taking 1 = O we see that f/(x;y) < g7y



