3.1 Basics of Convex Optimization

Let’s consider the problem
min f(x)

zeC

where f: R® — R is a convex function and C' is a convex subset of R”.

Definition: A point x € C Ndomf is called a feasible point.
If there is at least one feasible point, then the problem is called feasible.
A point z* is called a minimum of f over C if

z* € Cndomf, f(z*)= inf f(z)
zeC
We may write 2* € argmin,cc f(z) or even * = argmingec f(x) if 2* is the
unique minimizer.

Other than global minimum, we also have a weaker definition of local mini-
mum, one that is only minimum compared to the points nearby.

Definition:(Local minimizer) We call z* a local minimum of f over C if
z* € CNdomf and there exists € > 0 such that

f(z*) < f(x), Vo € C with ||z — 2¥|| <€

In the convex setting, we have the following nice result.

Proposition: Let f : R® — R be a convex function and let C' be a convex
set. Then a local mimimum of f over C is also a global minimum of f over C.
If f is strictly convex, then there exists at most one global minimum of f over

C.

Proof. Suppose z* is a local minimum that is not global.
Then there exists  such that f(z) < f(z*). Then for A € (0,1),

fAz"+ (1= XNz) < Af(2") + (1= A)f(z) < f(z7)

Since f has smaller value on the line connecting x and z*, this contradicts the
local minimality of x*.

Suppose f is strictly convex, let z* be a global minimum of f over C. Let x € C
such that « # x*. Consider y = (v + 2*)/2. Then y € C' and

Fl) < 3@+ ) < Fa)

Since z* is a global minimum, f(z*) < f(y).
Then f(z*) < f(z). Hence z* is the unique global minimum of f over C. O



3.1.1 Existence of solution

Let’s consider a general optimization problem

min f(z

min f(z)

where f:R® — R and C C R".

A basic question is whether a solution to the above problem exists.

Recall the famous Weierstrass theorem. Proposition: If f is continuous and
C is compact, then there exists a global minimum.

In order to consider cases where C' is not bounded (e.g. R™), we need a new
notation.

Definition: (Coercivity) A function f : R® — R is called coercive if for
all sequence {xy} with [zx|| — oo, we have limg_,o0 f(2x) = 00.

Lemma: Let f : R®” — R be a continuous function. Then the following are
equivalent.

1. All level sets of f are compact, i.e. {z| f(z) < a} is compact for all a.
2. f is coercive.

Proof. Suppose all level sets of f are compact. Suppose {z} is a sequence with
||[zk|| — co. Suppose f(zx) # oo. Then there exists subsequence xy; such that
f(z;) is bounded by a for some a. Then {z;,} C V,. This contradicts the
compactness of V,,. Hence, f is coercive.

Conversely, suppose f is coercive. Suppose V,, is not compact for some . Since
f is continuous, V,, must be closed, this means V,, is not bounded.

Hence, there exists a sequence {x} C V,, such that ||zx|| — oco. This contradicts
the coercivity of f since f(xy) < a. O

Proposition: Suppose f is lower-semicontinuous and coercive. Suppose C' is
non-empty and closed. Then f has a global minimum over C'.

Proof. We may assume that f(x) < oo for some 2 € C. Then f* = inf,cc f(z) <
0.

Let {z} C C be a sequence such that lim f(zy) = f* < oco. Then since f is
coercive, {z} is bounded. Then there exists a subsequence x, converging to
a point z*.

Since C is closed, * € C. Then

= lim f(z) = Jlgglo fzg;) > f(x¥)

k— o0

Therefore, x* is a global minimmum of f over C. O



3.1.2 Optimal condition

For a unconstrained problem, one has a simple optimality test, which is the
"derivative’ test in calculus.

Let f be a differentiable convex function on R™. Then x* solves

min f(z)

if and only if V f(2*) = 0. How about a constrained problem?
Let’s consider the general constrained problem

min f(x)

zeC

where C' is a convex set, and f is convex.
We have the following result.

Proposition: Let C' be a nonempty convex set and let f : R®™ — R be a
convex differentiable function over an open set that contains C. Then z* € C
minimizes f over C if and only if

(Vf(x*),(z—2%)) >0, Vz € C.
Proof. Suppose (Vf(z*),(z —x*)) > 0, Vz € C, then we have,
fz) = f(@") 2(Vf(@"),(z —2")) 20, Vz € C.

Hence z* indeed minimizes f over C.
Conversely, suppose z* minimizes f over C'. Suppose on the contrary that
(Vf(x*),(z —x*)) <0 for some z € C, then

o £+ alz = a%) - 1)
al0 o

=(V/f(z"), (z —27)) <0.
Then for sufficiently small o, we have f(z*+a(z—z*))—f(z*) < 0, contradicting
the optimality of x*. O

Examples (a) Let’s consider the following linear constrained problem.

m%{{n f(x) subject to Az = b
me n

where A is a m X n matrix and b € R™.
Suppose we have a solution x*, then

(Vf(z*),y — ") >0, Yy such that Ay =b

This is the same as
(Vf(a"),h) = 0, Vh € N(A).



Since —h € N(A) if h € N(A), we have
(Vf(z*),h) =0, Yh € N(A).

Hence Vf(z*) € N(A)+ = R(AT).
So there exists p € R™ such

Vi) +ATu=o0.
To conclude, z* is a solution to the minimization problem if and only if
1. Axz* =b

2. There exists p* € R™ such that Vf(x*) + ATp = 0.

(b) Let’s consider the minimization problem

min f(z), subject to z > 0.
rcR”

Suppose we have a solution x*, then
(Vf(z"),y—2") >0, Yy € RY}.
In particular, 0, 2z* € R}, so
(Vf(z"),2") =0, (Vf(z"),y) 20, ¥y € RY.
Hence, V f(z*) > 0. This is the same as saying there exists A* > 0 such that
Vi@ )= =0

To conclude, x* is a solution if and only if

1. 2*>0

2. There exists A* > 0 such that Vf(z*) —A\* =0

3. Xz =0



