
3.1 Basics of Convex Optimization

Let’s consider the problem
min
x∈C

f(x)

where f : Rn → R is a convex function and C is a convex subset of Rn.

Definition: A point x ∈ C ∩ domf is called a feasible point.
If there is at least one feasible point, then the problem is called feasible.
A point x∗ is called a minimum of f over C if

x∗ ∈ C ∩ domf, f(x∗) = inf
x∈C

f(x)

We may write x∗ ∈ arg minx∈C f(x) or even x∗ = arg minx∈C f(x) if x∗ is the
unique minimizer.

Other than global minimum, we also have a weaker definition of local mini-
mum, one that is only minimum compared to the points nearby.

Definition:(Local minimizer) We call x∗ a local minimum of f over C if
x∗ ∈ C ∩ domf and there exists ε > 0 such that

f(x∗) ≤ f(x), ∀x ∈ C with ||x− x∗|| < ε

In the convex setting, we have the following nice result.

Proposition: Let f : Rn → R be a convex function and let C be a convex
set. Then a local mimimum of f over C is also a global minimum of f over C.
If f is strictly convex, then there exists at most one global minimum of f over
C.

Proof. Suppose x∗ is a local minimum that is not global.
Then there exists x such that f(x) < f(x∗). Then for λ ∈ (0, 1),

f(λx∗ + (1− λ)x) ≤ λf(x∗) + (1− λ)f(x) < f(x∗)

Since f has smaller value on the line connecting x and x∗, this contradicts the
local minimality of x∗.
Suppose f is strictly convex, let x∗ be a global minimum of f over C. Let x ∈ C
such that x 6= x∗. Consider y = (x+ x∗)/2. Then y ∈ C and

f(y) <
1

2
(f(x) + f(x∗)) ≤ f(x)

Since x∗ is a global minimum, f(x∗) ≤ f(y).
Then f(x∗) < f(x). Hence x∗ is the unique global minimum of f over C.
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3.1.1 Existence of solution

Let’s consider a general optimization problem

min
x∈C

f(x)

where f : Rn → R and C ⊆ Rn.
A basic question is whether a solution to the above problem exists.
Recall the famous Weierstrass theorem. Proposition: If f is continuous and
C is compact, then there exists a global minimum.

In order to consider cases where C is not bounded (e.g. Rn), we need a new
notation.

Definition: (Coercivity) A function f : Rn → R is called coercive if for
all sequence {xk} with ‖xk‖ → ∞, we have limk→∞ f(xk) =∞.

Lemma: Let f : Rn → R be a continuous function. Then the following are
equivalent.

1. All level sets of f are compact, i.e. {x| f(x) ≤ a} is compact for all a.

2. f is coercive.

Proof. Suppose all level sets of f are compact. Suppose {xk} is a sequence with
||xk|| → ∞. Suppose f(xk) 6→ ∞. Then there exists subsequence xkj such that
f(xkj ) is bounded by α for some α. Then {xkj} ⊂ Vα. This contradicts the
compactness of Vα. Hence, f is coercive.
Conversely, suppose f is coercive. Suppose Vα is not compact for some α. Since
f is continuous, Vα must be closed, this means Vα is not bounded.
Hence, there exists a sequence {xk} ⊂ Vα such that ||xk|| → ∞. This contradicts
the coercivity of f since f(xk) ≤ α.

Proposition: Suppose f is lower-semicontinuous and coercive. Suppose C is
non-empty and closed. Then f has a global minimum over C.

Proof. We may assume that f(x) <∞ for some x ∈ C. Then f∗ = infx∈C f(x) <
∞.
Let {xk} ⊂ C be a sequence such that lim f(xk) = f∗ < ∞. Then since f is
coercive, {xk} is bounded. Then there exists a subsequence xkj converging to
a point x∗.
Since C is closed, x∗ ∈ C. Then

f∗ = lim
k→∞

f(xk) = lim
j→∞

f(xkj ) ≥ f(x∗)

Therefore, x∗ is a global minimmum of f over C.
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3.1.2 Optimal condition

For a unconstrained problem, one has a simple optimality test, which is the
’derivative’ test in calculus.

Let f be a differentiable convex function on Rn. Then x∗ solves

min
x∈Rn

f(x)

if and only if ∇f(x∗) = 0. How about a constrained problem?
Let’s consider the general constrained problem

min
x∈C

f(x)

where C is a convex set, and f is convex.
We have the following result.

Proposition: Let C be a nonempty convex set and let f : Rn → R be a
convex differentiable function over an open set that contains C. Then x∗ ∈ C
minimizes f over C if and only if

〈∇f(x∗), (z − x∗)〉 ≥ 0, ∀z ∈ C.

Proof. Suppose 〈∇f(x∗), (z − x∗)〉 ≥ 0, ∀z ∈ C, then we have,

f(z)− f(x∗) ≥ 〈∇f(x∗), (z − x∗)〉 ≥ 0, ∀z ∈ C.

Hence x∗ indeed minimizes f over C.
Conversely, suppose x∗ minimizes f over C. Suppose on the contrary that
〈∇f(x∗), (z − x∗)〉 < 0 for some z ∈ C, then

lim
α↓0

f(x∗ + α(z − x∗))− f(x∗)

α
= 〈∇f(x∗), (z − x∗)〉 < 0.

Then for sufficiently small α, we have f(x∗+α(z−x∗))−f(x∗) < 0, contradicting
the optimality of x∗.

Examples (a) Let’s consider the following linear constrained problem.

min
x∈Rn

f(x) subject to Ax = b

where A is a m× n matrix and b ∈ Rm.
Suppose we have a solution x∗, then

〈∇f(x∗), y − x∗〉 ≥ 0, ∀y such that Ay = b

This is the same as
〈∇f(x∗), h〉 ≥ 0, ∀h ∈ N(A).
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Since −h ∈ N(A) if h ∈ N(A), we have

〈∇f(x∗), h〉 = 0, ∀h ∈ N(A).

Hence ∇f(x∗) ∈ N(A)⊥ = R(AT ).
So there exists µ ∈ Rm such

∇f(x∗) +ATµ = 0.

To conclude, x∗ is a solution to the minimization problem if and only if

1. Ax∗ = b

2. There exists µ∗ ∈ Rm such that ∇f(x∗) +ATµ = 0.

(b) Let’s consider the minimization problem

min
x∈Rn

f(x), subject to x ≥ 0.

Suppose we have a solution x∗, then

〈∇f(x∗), y − x∗〉 ≥ 0, ∀y ∈ Rn+.

In particular, 0, 2x∗ ∈ Rn+, so

〈∇f(x∗), x∗〉 = 0, 〈∇f(x∗), y〉 ≥ 0, ∀y ∈ Rn+.

Hence, ∇f(x∗) ≥ 0. This is the same as saying there exists λ∗ ≥ 0 such that

∇f(x∗)− λ∗ = 0

To conclude, x∗ is a solution if and only if

1. x∗ ≥ 0

2. There exists λ∗ ≥ 0 such that ∇f(x∗)− λ∗ = 0

3. λ∗i x
∗
i = 0

4


